

Prototyping Studies for a Scintillator (semi)Digital HCal and a Tail-Catcher/Muon Tracker

Vishnu V. Zutshi for NIU/NICADD

Outline

- A scintillator-based 2-bit hadron calorimeter
 MC studies
 Hardware Prototyping
 Plans
 1 Tail-catcher/Muon tracker
 - MC studies Hardware Prototyping Plans

N vs. E (single hadrons)

0.25mip threshold

3

Simple counting of cells above threshold

Single Particle E Resolution

4

Parameterized Jet E Resolution

V. Zutshi, ICAR04, Argonne

Single Particle Resolution (10GeV)

V. Zutshi, ICAR04, Argonne

Single Particle Resolution (50GeV)

V. Zutshi, ICAR04, Argonne

Can be flattened with multiple thresholds

The Culprit

V. Zutshi, ICAR04, Argonne

After threshold-based weighting of cells

Single Particle Resolution (50 GeV)

V. Zutshi, ICAR04, Argonne

Similar treatment to 10 GeV....

10

Layer Stack

V. Zutshi, ICAR04, Argonne

Cosmic Data with PMT

Started with 11pe now ~ 14 p.e being regularly achieved

Efficiency vs. Noise Rejection

Si-PM and MRS

Pixilated (500 to 1000 on ~1mm²) Geiger mode sensor with high gain and modest Quantum*geom. efficiency

V. Zutshi, ICAR04, Argonne

Si-PM's

V. Zutshi, ICAR04, Argonne

Cosmic Data with Si-PM

MRS Dark Noise Rate

V. Zutshi, ICAR04, Argonne

5/19/2004

Surface Treatment/Wrapping

UNPOLISHED TOP AND	POLISHED TOP AND	UNPOLISHED TOP AND
POLISHED BOTTOM	POLISHED BOTTOM	UNPOLISHED BOTTOM
0.98	1.00	1.02

Tyvek	Paint	VM 2002	Mylar	CM590	CM500	Alum Foil
1.00	0.89	1.08	0.83	0.28	0.44	0.63

Thickness vs. weight

- If weight and thickness track each other, then it may be possible to monitor paint application via weight only
- Check to see if thickness and weight track each other by plotting thickness vs. weight:

Thidenessvsweight

V. Zutshi, ICAR04, Argonne

Cells Fabricated

	Eljen Bi	cron	extruded				
Normalized Response							
Cell	Groove	Area	Response				
Hexagon	Sigma	9.4	1.0				
Square	Sigma /	9.4	0.88				
Square	Sigma	6	0.92				
Hexagon	Sigma	6	0.92				
Hexagon	Sigma	9.4	1.05				
Square	Straight	9.4	0.81				
Square	Straight	4	0.85				
Square	Straight	9.4	0.46				
Hexagon	Straight	9.4	0.48				
Hexagon	Sigma	9.4	0.58				

Since light ample, can optimize for ease of construction

Sigma Groove Uniformity

Straight Groove Uniformity

24

V. Zutshi, ICAR04, Argonne

Scanning over the neighbors

Position of Radioactive Source [mm]

V. Zutshi, ICAR04, Argonne

Overall dispersion<10%

Response Dispersion

0.993 ± 0.006

RESPONSE LONG AFTER PRODUCTION

Column1

Mean	0.992641		
Standard Error	0.005622		
Median	0.994932		
Mode	#N/A		
Standard Deviation	0.030794		
Sample Variance	0.000948		
Kurtosis	-0.64168		
Skewness	0.171597		
Range	0.117636		
Minimum	0.935048		
Maximum	1.052684		
Sum	29.77922		
Count	30		

Scint. (s)DHCAL looks like a very competitive option....

Summary/Plans

V. Zutshi, ICAR04, Argonne

Publications

- "Towards a Scintillator Based Digital Hadron Calorimeter for the Linear Collider Detector" accepted for publication in IEEE, Transactions on Nuclear Science.
- "Small Scintillating Cells as the Active Elements in a Digital Hadron Calorimeter for the e⁺e⁻ Linear Collider Detector" accepted for publication in Journal of Physics G.

Tail-catcher/Muon System

V. Zutshi, ICAR04, Argonne

Goals for the TC/Muon System

- Provide a reasonable snapshot of the tail-end of the shower for simulation validation
- Prototype detector with high-fidelity to what is imagined for a generic LCD correcting for leakage understanding the impact of coil muon reconstruction + eflow fake rate

For charged pions with >5% of E inside TC

On tail-catching

V. Zutshi, ICAR04, Argonne

Accounting for material in the coil...

V. Zutshi, ICAR04, Argonne

$\textbf{E}_{rec}/\textbf{E}_{gen} \text{ 50 GeV } \pi^{\pm}$

34

V. Zutshi, ICAR04, Argonne

Strip Width

ms/Layers

35

Current Design

1 "Fine" section (8 layers)

2cm Steel, 0.5 cm thick scintillator

- Following "coarse" section (8 layers)
 10cm Steel, 0.5 cm scintillator
- 1 5cm wide strips, 1m long
- 1 Tyvek wrapping
- 1 Alternating x-y orientation
- 1 Si-PM photo-detection

10cm wide, 5mm thick

Fermi-NICADD Extruder Line

V. Zutshi, ICAR04, Argonne

First Measurements

V. Zutshi, ICAR04, Argonne

Uniformity

Provides better rigidity

Separation Grooves

Response

V. Zutshi, ICAR04, Argonne

5/19/2004

The Power of Glue

V. Zutshi, ICAR04, Argonne

Response and Strip Fabrication

V. Zutshi, ICAR04, Argonne

44

Uniformity Scan

46

V. Zutshi, ICAR04, Argonne

Summary/Plans

- 1 5mm thick Fermi-NICADD produced extruded strips used in combination with Si-PM/MRS planned for use in tail-catcher/muon tracker.
- 1 Strip-fiber configuration being finalized.
- Putting together mechanical module to understand and resolve assembly issues.
- 1 Working with Fermi for cart design and construction.

A vigorous program of

LC Detector R&D Underway