Matthew Wood Northwestern University May 19, 2004

Supported by Illinois Consortium for Accelerator Research (ICAR)

and Northwestern University

Compact Linear Collider (CLIC)

- Proposed design for e⁺/e⁻ linear collider based at CERN
- 3-5 TeV CM energy
- 10^{34} - 10^{35} cm⁻² s⁻¹ max luminosity
- Two beam acceleration scheme
- 150 MV/m acceleration gradient

Third CLIC Test Facility (CTF3)

- Prototype facility that will demonstrate the essential technologies of CLIC
- Critical issues for CTF3:
 - Achieving a high current and high frequency drive beam
 - Stability of drive beam decelerator
 - Achieving 150 MV/m acceleration gradient

Current Status of CTF3

- Housed in the LEP Pre-injector complex (LPI) at CERN
- Drive Beam Accelerator currently under construction
- Scheduled completion in 2008

Layout of CFT3 Nominal Phase

Development of a Beam Loss Detection System at CTF3/CLIC

- Northwestern University will design and build a beam loss detection system for CTF3 based on the detection of secondary particles
- First test in the drive beam accelerator of CTF3 during 2004/2005
- Motivation for Beam Loss Detection System:
 - Machine protection
 - Tuning of machine parameters
 - Detailed studies of beam halo and other beam loss mechanisms
- Beam losses also measured with wall current monitors (sensitive to % level) sufficient for machine protection at CTF3 but beam loss detectors still useful for machine tuning
- A future CLIC accelerator will have much higher beam current and energy
 - Beam losses will need to be kept at a much lower level than CTF3 (< $\%_0$)
 - CLIC will need to rely more heavily on beam loss detectors for machine protection

Small Ionization Chamber (SIC)

- Detector chosen for the CTF3 beam loss detection system
- Developed at Northwestern University (Mayda Velasco and Anne Dabrowski) in conjunction with Fermilab (Gianni Tassotto) and Richardson Electronics
- SIC characteristics:
 - Radiation Hard
 - Can be operated with gas (ionization) or vacuum (secondary emission)
 - Large Dynamic Range $(10^7 10^{13} \text{ cm}^{-2} \text{s}^{-1})$
 - Effective detecting surface of 1 ${\rm cm}^2$

Beam Loss Simulations for CTF3/CLIC

- GEANT 3.21 simulations will be used in the design of the beam loss detection system
- Simplifying Assumptions:
 - Beam loss occurs at a single position in the linac $\phi=90^o~\theta=1-10$ mrad
 - No divergence in beam energy, angle, or position should average out in secondary fluxes
 - Minimum energy cut on production of secondary particles 100 keV
- General Observations:
 - Secondary fluxes fall off as $1/r^2$ from the point of beam loss
 - Secondary fluxes scale linearly with beam energy
 - Secondaries are all electrons, positrons, or photons (small hadron component not represented in simulations)
 - Photon fluxes are \sim 10 times greater than electron/positron fluxes
- Secondary fluxes normalized with respect to a beam loss of 1 mA

Drive Beam Accelerator Simulations

- Initial focus on simulations of the CTF3 Drive Beam Accelerator (DBA) where the beam loss detectors will first be installed
- DBA has a modular organization with each module containing:
 - 2 Accelerating Structures
 - 3 Quadrupole Magnets
 - 1 Beam Position Monitor
 - 1 Dipole Magnet (not represented in simulations)
- Some approximate parameters for the CTF3 Drive Beam Accelerator:
 - Initial Beam Energy: 20 MeV
 - Final Beam Energy: 150 MeV
 - Beam Current: 3.5 A
 - Pulse Length: 300 ns (\sim 1.5 μ s nominal)
 - Linac Module Length: 4.5 m

ICAR Meeting May 19-20, 2004

Hypothetical System for DBA

- One set of detectors per DBA module
- Detectors are 1 cm^2 (detecting surface of SIC)
- Detect only electrons (SEM-mode) or photons and electrons (ionization-mode)
 - Place all detectors at a single zed and different ϕ positions
 - Sensitive to ϕ of beam loss
 - Less sensitive to z and intensity of beam loss
 - Place detectors at a single ϕ and different zed positions
 - No sensitivity to ϕ of beam loss
 - More sensitive z and intensity of beam loss

- Goals for Beam Loss System
 - Intensity of beam loss
 - Position of beam loss (z, ϕ)
 - Time structure of beam loss \rightarrow not relevant for simulations
- Challenges for Beam Loss System
 - Disentangling intensity from position of beam loss
 - Beam loss at multiple positions
 - Beam loss in accelerating structures (hard to detect)

Method of Analysis

• Zed of the beam loss can be parameterized as a function of the relative signals on the detectors in the module

$$z = \alpha_0 + \sum_i \alpha_i \frac{D_i}{S}, i = 1, \dots N$$
⁽¹⁾

where S is the sum of the detector signals and N is the number of detectors in a module

- Intensity is then calculated directly from simulations knowing the zed position, beam energy, and magnitude of the detector signals
- Free parameters α_i are obtained from a straightforward minimization with GEANT data
- This method can be applied to any arrangement of detectors
- Parameterization could also include other variables such as ϕ , beam energy, and beam angle

Conclusions and Future Plans

- Placing detectors at a single zed position
 - Difficult to distinguish losses in the accelerating structure from those in the quads
 - Determining ϕ of loss is not straightforward depends on z
 - Difficult to separate effects of z and I \rightarrow 1 mA loss at x looks like 10 mA loss at y
- Placing detectors at multiple zed positions
 - Can determine z independently of I
 - No information on ϕ but this is ultimately less important for machine protection
- Compare results with another simulation code GEANT4
- Do more comparisons with data obtained in controlled tests at CTF3
 - Several beam tests with ACEM detectors run in November 2003
 - GEANT simulations and data generally agreed well