

1

Extruded Scintillator Project

Presented by Victor Rykalin

ICAR

ARGONNE MAY 2004

Outline

Our past accomplishments.

Current situation.

Plans.

Our past accomplishments

- The final decision about extruder purchasing was made by April 2002.
- The extruder was delivered to FNAL by February 24 2003.
- The extruder was assembled, debugged for the first test run by May 6 2003.
- The very first samples were made by June 2003.
- The first results of the light output and uniformity response of the FNAL-NICADD extruded scintillator were reported at CALOR 2004 ITALY
- The collaboration, supported by NICADD, between NICADD NIU and Engineering Department NIU was established by September 2002.
- The simulations of the different dies were performed and 2*1 cm² die was cut at FNAL site 2003-2004.
- Very preliminary tests of the new die were carried out and the results are promising.

This is a small factory !

ZE 40A UTS Technical Data OUTPUT 50-300 Pounds/hour

- Screw diameter
- Screw speed
- Drive power
 - Exp. Output
- Height
- Weight
- Theoretical life

- 44 mm
 - 1200 RPM
- 200 HP
 - Det. By trials (180 P/h)
 - ~1100 mm
 - ~3500 kg
 - ~40000 hours

One 8 hours shift output, 50kg/h, 2.7 cm/s (10cm wide, 5 mm thick) $\sim 80 \text{ m}^2$, $\sim 400 \text{ kg}$

Extruder up and running

Publications related to FNAL-NICADD extruded scintillator project.

• STUDY OF NEW FNAL-NICADD EXTRUDED SCINTILLATOR AS ACTIVE MEDIA OF LARGE EMCAL OF ALICE AT LHC.

By O.A. Grachov, T.M. Cormier, A. Pla-Dalmau, A. Bross, V. Rykalin (Wayne State U. & Fermilab & Northern Illinois U.),. FERMILAB-CONF-04-046 (Calor 2004 Italy), May 2004. 7pp.

SMALL SCINTILLATING CELLS AS THE ACTIVE ELEMENTS IN A DIGITAL HADRON CALORIMETER FOR THE E+E- LINEAR COLLIDER DETECTOR. By <u>A. Dyshkant, D. Beznosko, G. Blazey, D. Charkraborty, K. Frances, D. Kubik,</u> M.I. Martin, J. McCormick, V. Rykalin, V. Zutshi (Northern Illinois U.), <u>A. Pla-Dalmau</u> (Fermilab),. FERMILAB-PUB-04-015, Feb 2004. 11pp. Submitted to J.Phys.G

EXTRUDING PLASTIC SCINTILLATOR AT FERMILAB. By Anna Pla-Dalmau, Alan D. Bross (Fermilab), Victor V. Rykalin (Northern Illinois U.),. FERMILAB-CONF-03-318-E (IEEE conference), Oct 2003. 3pp.

- "Towards a Scintillator Based Digital Hadron Calorimeter for the Linear Collider Detector", IEEE volume 51, N4 By <u>A. Dyshkant</u>, <u>D. Beznosko</u>, <u>G. Blazey</u>, <u>D. Charkraborty</u>, <u>K. Frances</u>, <u>D. Kubik</u>, <u>M.I. Martin</u>, <u>J. McCormick</u>, <u>V. Rykalin</u>, <u>V. Zutshi</u>
- <u>"Extrusion Simulation and Experimental Validation to Optimize</u> <u>Precision Die Design,"</u> ANTEC 2004, The Annual Technical Conference, Society of Plastics Engineers, Chicago, May 16-20, 2004 Vaddiraju, S.R., M. Kostic, L. Reifschneider, A. Pla-Dalmau, V. Rykalin, and A. Bross

Some characteristics of the extruded scintillator

Brief summary of the FNAL-NICADD extruded scintillator characteristics.

Thickness	σ~0.6 %	NICADD	(Over 40 m)
Uniformity LY	σ~2.2 %	NICADD	(5*5 cm ²)
Uniformity LY	σ~3 %	NICADD	(over 6 m)
Uniformity LY		WSU (SCSN-81)	(10*10 cm ²)
Light Yield		BC408 Kuraray	NICADD SCSN-81 WSU
Rad. Hardness (gamma)	5 % LY d	legradation FNAL	after 1 Mrad

Die simulation - bridge to save time, improve profile of the extrusion!

Collaboration with ME NIU department

POLYFLOW package software Finite-element code

Predict three-dimensional free surfaces

Inverse extrusion capability

Strong non-linearity

Evolution procedure

Profile simulation - Blue print - Die cut

Current status. Some modifications are must. a

Industrial Vision System (IVS) will be a good addition to the size control and to the color

The old hopper

The new hopper

R&D for the near future projects

Tail catcher for DHCAL prototype test (Extruded scintillator, WLS + MRS readout)

5 mm scintillator thickness, extruded hole,1.2 mm Y11 fiber, 10 cm out of scintillator, MRS readout ~ 15 PE

5/19/2004

FUTURE PLANS and current R&D

Topic three. Plans

- Triangle dies simulation, die cut, die test (MINERVA)
- Tail catcher prototype (existing die), test run.
- CMS ECAL prototype (existing die), test run.
- To test extruder at higher speed (75 kg/h)
- Possible IVS implementation.
- TEST stand at lab 5 (for QC, level 0), creating and commissioning(LY, Mech/tolerance, LY uniformity)
- R&D with solid state photo-sensors.
- IEEE conference report on extruded scintillator October 2004, Rome.
- To create and to support the NICADD-FNAL extruder web site