Radiation Shielding Studies for the MuCool Test Area at Fermilab

Igor Rakhno

University of Illinois at Urbana-Champaign

ICAR workshop at Argonne National Laboratory

May 19-20, 2004
Outline

• Introduction

• 3D Geometry Model of the MuCool Test Area (MTA)

• Proton Beam & Target

• Calculated Dose Distributions & Neutron Energy Spectra

• Classification
Introduction

The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams.

In this study the results of Monte Carlo radiation shielding calculations performed using MARS14 code are presented and discussed.

The areas taken into account:

- Downstream portion of the target hall and berm around it
- Access pit
- Service building
- Parking lot

Final classification is given for these areas at normal operating conditions according to the Fermilab Radiological Control Manual.
Introduction - Why MARS?

- **Low-energy neutrons** (below 20 MeV) in MARS are transported with the ENDF/B-VI data by invoking the **MCNP** code. Currently it is a standard in the 'neutron world'.

 When working with the **MARS-MCNP** duet, there are two options:

 (i) Invoking MCNP collision physics within MARS;

 (ii) Generating a source of low-energy neutrons for subsequent MCNP standalone modeling.

- Such **deep-penetration** problems require using an efficient variance reduction technique like **mathematical expectation method** implemented in MARS.
Geometry Model – Elevation View (Target Hall)
Geometry Model – Plan View (Lower Level)
Geometry Model – Plan View (Upper Level)

- Access pit
- Door
- Proton beam
- Target hall
- Heavy concrete
- Refrigerator room
- Compressor room
- Parking
- Roll-up door
- Dirt

Dimensions:
- 0 cm to 2.40e+03 cm
- 1.60e+03 cm to 2.40e+03 cm

University of Illinois, Urbana-Champaign
I. Rakhno
Proton Beam & Target

Beam: 400-MeV protons; $\sigma_r = 1\text{cm}$

$2 \times 10^{14} \text{ p/s or } 1.3 \times 10^{13} \text{ p/pulse at } 15 \text{ Hz repetition rate}$

Proton interaction lengths, λ (cm)

<table>
<thead>
<tr>
<th></th>
<th>LH_2</th>
<th>Al</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{tot}</td>
<td>910</td>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>λ_{inel}</td>
<td>1110</td>
<td>41</td>
<td>16</td>
</tr>
</tbody>
</table>

Targets

<table>
<thead>
<tr>
<th>Target</th>
<th>L (cm)</th>
<th>R (cm)</th>
<th>$%$ of λ_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH_2</td>
<td>21</td>
<td>10.5</td>
<td>2</td>
</tr>
<tr>
<td>Cu</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
Proton Beam & Target (2)

Spallation neutron studies → full absorption (≈100%)
targets of heavy & dense materials (Pb, Unat) are used.

- It is claimed that the facility can serve as a multi-purpose one for future operations.

- The 1-cm thick copper target (10% of interaction length) is considered as a generic (modest “averaged”) target.
Calculated Dose Distributions above the Berm (normal operation)

\[\text{Attenuation} = \exp\left(-\frac{x_1}{\alpha_1} - \frac{x_2}{\alpha_2}\right) \]

<table>
<thead>
<tr>
<th>Material (density, g/cm³)</th>
<th>Attenuation length, (\alpha) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compacted soil (2.24)</td>
<td>39</td>
</tr>
<tr>
<td>High-density concrete (3.64)</td>
<td>28</td>
</tr>
<tr>
<td>Iron (7.87)</td>
<td>23</td>
</tr>
</tbody>
</table>
Calculated shielding compositions which provide the dose level of 0.5 mrem/hr on the top of the MTA shielding.

10.5' of high-density concrete + 2' of dirt (total is 12.5') provide 5 mrem/hr on the top Controlled Area of minimal occupancy (0.25 – 5 mrem/hr, just signs).
Dose Equivalent above the Berm (normal operation) (2)

At present we have 11' of dirt → 330 mrem/hr (10% target).
For a 21-cm LH2 (2% target) it means 66 mrem/hr.
Radiation Area → dose rate from 5 up to 100 mrem/hr (Fermi RCM).
Calculated Dose Distributions in the Access Pit (normal operation)

Lower Level

Upper Level

Dose equivalent (mrem/hr)

University of Illinois, Urbana-Champaign

I. Rakhno
Dose Equivalent in the Cryo Room (normal operation)

10" penetration

4" and 8" penetrations

University of Illinois, Urbana-Champaign

I. Rakhno
Neutron Energy Spectra in the 10'' Penetration (normal operation)

Near target hall

Mean \(0.7067 \times 10^{-3}\)
RMS \(0.2683 \times 10^{-2}\)

Near cryo room

Mean \(0.1307 \times 10^{-1}\)
RMS \(0.5101 \times 10^{-1}\)
Three options for additional shielding

1. A wall in target hall in front of penetrations.

 \[H \times W \times T = (200 + 95) \text{ cm} \times 80 \text{ cm} \times 10 \text{ cm} \]

 ↓ ↓

 \[\text{BMCN Tungsten} \]

 ↓ ↓

 600 kg 1500 kg

2. A wall instead of the door between cryo room & compressor room.

 \[H \times W \times T = 220 \text{ cm} \times 190 \text{ cm} \times 20 \text{ cm} \]

 Regular concrete \(\approx\) 2000 kg.

3. Two 2” iron collimators, 20” in length, inside the 10” penetration.

 Two 1” iron collimators, 20” in length, inside the 8” penetration.
Dose Distribution in the Service Building for the 3 shielding options

To reduce dose at the parking lot, both 2nd and 3rd option are more efficient when compared to the 1st one.

University of Illinois, Urbana-Champaign

I. Rakhno
Dose Distribution in the Service Building (options 2 and 3 together)
To reduce further the dose at parking lot, additional local shielding is required near the internal wall in the refrigerator room.

A 50-cm iron block \Rightarrow the predicted dose at parking lot ≤ 0.05 mrem/hr at normal operation at 10^{14} p/s.
Conclusions

1. A credible beam accident at MTA is less severe than normal operation.

2. At normal operation the following classification is suggested (Fermi RCM):

 - Berm above target hall – **Controlled Area** of minimal occupancy (0.25 – 5 mrem/hr);
 - Access pit – **Radiation Area** with rigid barriers/locked gates (5 – 100 mrem/hr);
 - Cryo room - **Radiation Area** with rigid barriers/locked gates (5 – 100 mrem/hr);
 - Compressor room - **Controlled Area** of minimal occupancy (0.25 – 5 mrem/hr);
 - Parking lot – **Normal area** of unlimited occupancy (dose rate ≤ 0.05 mrem/hr).
Quality of the calculations – NuMI Activation Experiment (2000-2001)

AP0 Enclosure at Fermilab
Quality of the calculations – NuMI Activation Experiment (2000-2001)