Detector Simulations at NICADD

Dhiman Chakraborty, Guilherme Lima, Jeremy McCormick, Vishnu Zutshi

NICADD / NIU

ICAR Workshop
Argonne, May 19, 2004
Outline

● Motivations

● Full detector: LCDG4
 - features
 - status

● Test beam simulation: TBMokka
 - features
 - status

● Summary
Digital Hadronic Calorimeter?

- High segmentation for better energy resolution: one bit (digital) or two bits (“semidigital” or multibit) per cell
- Questions to be addressed
 - Cost / performance optimization
 - Cell shapes (squares, rectangles, hexagons)
 - Cell dimensions
 - Absorber / active materials
 - Projective vs. non-projective calorimeters
 - Sampling fractions (number of layers, active to absorber ratios)
Detector Simulation Context

- **Event generation**
 (Pandora-)Pythia, Whizard, SingPartGen (java), or any other package with binary STDHEP output

- **LCDG4** for detector simulation
 Other options: Mokka, Gismo (old, not Geant4) and LCS (under development at SLAC)

- **Post-Geant processing** (to be developed)
 digitization, cell ganging, noise, inefficiencies, non-uniformities, pile-up, etc.

- **Analysis**
What is LCDG4

- A Geant4-based detector simulator to support detector R&D for the Linear Collider
- Goal: replace long-used, unsupported Gismo
 - Input format: binary STDHEP
 - Output format: SIO only for now, LCIO also soon
 - Several detector geometries are implemented via XML geometry files

 Simplistic geometry: cylinders, disks and cones only, no cracks, limited representation of support structure
Geometry info in XML

...<volume id="HAD_BARREL" rad_len_cm="1.133" inter_len_cm="0.1193">
 <tube>
 <barrel_dimensions inner_r = "144.0" outer_z = "286.0" />
 <layering n="34">
 <slice material = "Stainless_steel" width = "2.0" />
 <slice material = "Polystyrene" width = "1.0" sensitive = "yes" />
 </layering>
 <segmentation cos_theta = "600" phi = "1200" />
 </tube>
 <calorimeter type="had" />
</volume>
...

• Flexible, easy to change dimensions, materials, layering, segmentation, etc.
• Error-prone, not very user-friendly
Options under study: SD, LD, PD

Silicon Detector

Large Detector

Precise Detector

G.Lima, ICAR, May 19, 2004
LCDG4: General features

- Output contents: one particle collection and several hit collections (one collection per subdetector)
- Each hit points to the contributing particles (except tracker hits from calorimeter back-scatterings, as in Gismo)
- All secondaries above an energy threshold (now set at 1 MeV), except for shower secondaries, are saved in output with:
 - Particle id and status codes (generation and simulation)
 - Production momentum and ending position
 - Calorimeter entrance point: position and momentum
 - Pointers to secondary particles (decay or interaction)
$e^+e^- \text{ into ttbar event (SDJan03)}$
Zoom on the primary interaction

Preassigned decays are followed (not recommended)
LCDG4 processing times

(in a 2.4 GHz CPU)

• Single particles:
 - Physics events
 - Z to X @ 91 GeV: 0.65 min/evt
 - tt to X @ 350 GeV: 2.28 min/evt
 - ZH to Xbb @ 500 GeV: 2.89 min/evt
 - WW to qqb @ 500 GeV: 2.97 min/evt
Mokka and LCDMokka

- Mokka is another Geant4-based simulation framework for Linear Collider R&D
- Detector geometry is described using a MySQL database
- Based on Tesla model, many other models and prototypes have been added into the geometry database
- Input: ASCII StdHEP / Output: ASCII or LCIO
- For more info, please visit Mokka web site: http://polywww.in2p3.fr/geant4/tesla/www/mokka/mokka.html
- LCDMokka: XML capabilities into Mokka v01-05 (latest version is v02-03), while LCDG4 is not able to use MySQL geometry files (e.g. Tesla)
- Used LCDMokka for comparisons with LCDG4
Fair comparison

- Geant4 version 5.2
- SDJan03 geometry
 (cylindrical layers with virtual cells)
- Physics list from Mokka v01.05
- Range cut of 0.1mm
- Identical I/O formats (binary stdhep input, text output) implemented into both simulators
- Same events processed in both detector simulators
 - single particles: 50 GeV $e^\pm, \mu^\pm, \pi^\pm, \theta = 90^\circ$, flat in φ
- Same materials in sub-detectors (look at X_0, λ_1)
Ecal: energies per layer

Live energy per layer in ECal – Single particles, 50 GeV

MIP peaks

G.Lima, ICAR, May 19, 2004
Hcal: energies per cell

Slightly different slopes...

HCal threshold at 0.7 MeV
MC Samples for general use

• Samples currently available at NIU through sftp:
 scpuser@k2.nicadd.niu.edu (lcd_2004): /pub/lima/lcdg4/v02-23

 – 2K each of e^\pm, μ^\pm, π^\pm, γ, n at $\theta = 90^\circ$ and flat in φ
 energies = 2, 3, 5, 10, 15, 20, 30, 50 GeV
 – 10K Z into (hadrons) at 91 GeV
 – 5K ttbar inclusive at 350 GeV
 – 5K WW into (hadrons)(any) at 500 GeV
 – 2K ZH into (any)(bbbar) at 500 GeV and $M_H = 120$ GeV
 – 2K ZH into (any)(bbbar) at 500 GeV and $M_H = 160$ GeV

• Other samples can be requested to lima at fnal.gov. Please read http://nicadd.niu.edu/~jeremy/lcd/simreq/ for guidelines.
How to access the MC samples

Several single-particle and physics data samples available from NIU data server using secure ftp:

```
% sftp scpuser@k2.nicadd.niu.edu
password: lcd_2004
sftp> cd pub/lima/lcdg4/v02-23
sftp> ls  (to see a list of .sio files available)
sftp> mget muons-10gev*.sio  (for example)
sftp> quit
%
```

See http://nicadd.niu.edu/~jeremy/admin/scp/index.html for more detailed access instructions, including instructions for windows winscp utility.
LCDG4 status summary

- Detailed comparisons between LCDG4 v02-11 and LCDMokka 01-05 are in good agreement (discrepancies of ~20% to Gismo have been observed)
- LCDG4 faster than Mokka, but it cannot be used for Tesla geometry
- Only cylinders, disks, and cones supported by current LCDG4 version (like Gismo). More realistic geometries to be implemented in the medium term
- Several MC physics samples have been generated for algorithm development and studies (SIO format)
- Source code available from SLAC or NIU CVS repositories
- For more information please check: http://nicadd.niu.edu/~jeremy/lcd/lcdg4/index.html
Test beam prototype simulation

- TBMokka
- Based on Mokka/Geant4, MySQL, LCIO
- NICADD / DESY collaboration for CALICE test beam simulation development
Single layer thicknesses (mm)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECal</td>
<td>Tungsten</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>G10</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Silicon</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>0.6</td>
</tr>
<tr>
<td>HCal</td>
<td>Polystyrene</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Steel</td>
<td>25</td>
</tr>
<tr>
<td>Tail Catcher</td>
<td>Polystyrene</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Steel</td>
<td>100</td>
</tr>
</tbody>
</table>
TBMokka: cell geometry

ECal
- 1cm x 1cm cells
- 30 layers
- 1m x 1m total

HCal
- 3x3, 6x6, 12x12cm^2
- 39 layers
- 0.9m x 0.9m total

Tail Catcher
- 150cm x 10cm cells
- 16 layers (hor / vert)
- 1.5m x 1.5m total
TBMokka geometry persistency model

<table>
<thead>
<tr>
<th>table</th>
<th>field</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name</td>
<td>TB00</td>
</tr>
</tbody>
</table>

ingredients

sub_detector

<table>
<thead>
<tr>
<th>name</th>
<th>db</th>
<th>driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBcatcher00</td>
<td>TBcatcher00</td>
<td>TBcatcher00</td>
</tr>
<tr>
<td>TBecal00</td>
<td>TBecal00</td>
<td>TBecal00</td>
</tr>
<tr>
<td>TBhcal00</td>
<td>TBhcal00</td>
<td>TBhcal00</td>
</tr>
</tbody>
</table>

G.Lima, ICAR, May 19, 2004
TB Driver Databases

TBcatcher00
 catcher
 n_layers
 layer_start
 y_place
 layer
 cell_width
 n_cell
 layer_thickness
 poly_thickness
 steel_thickness

database
 table
 field

TBecal00
 ecal
 n_layers
 y_place
 layer
 cell_dim_x
 cell_dim_z
 n_cell_x
 n_cell_z
 layer_thickness
 w_thickness
 g10_thickness
 si_thickness
 cu_thickness
 air_thickness

TBhcal00
 hcal
 n_layers
 n_complex
 y_place
 layer_inner
 cell_dim_x
 cell_dim_z
 n_cell_x
 n_cell_z
 layer_outer
 cell_dim_x
 cell_dim_z
 n_cell_x
 n_cell_z
 layer_thickness
 poly_thickness
 steel_thickness
TB Mokka: other features

- Virtual 1cm x 1cm cells for better performance and reuse of simulated data for different cell configurations
- Implementation uses general concepts for any box-like detector
- A standalone version (no Mokka) also exists, with some additional features
- Well documented at http://nicadd.niu.edu/~jeremy/lcd/tbeam/index.html
Test beam event Displays

2 GeV Piplus

50 GeV Piplus, with a test geometry: 18x18cm Ecal and air gap before a fine+coarse tail catcher
Summary

• NICADD is actively involved with both full-detector and test beam simulations for the next Linear Collider

• Discussions are under way to unify/merge all existing full-detector simulation packages worldwide for a common simulations package (see document to be posted at the Full Simulations forum, http://forum.linearcollider.org/)