

Beam Instrumentation for CTF3 and CLIC

- Beam loss Beam halo monitoring developments
- CLIC diagnostic
 - Common developments with other projects
 - Specific requirements for CLIC

Beam Loss and Beam Halo measurement

• Beam loss monitoring system is developed for the CTF3 Linac

• Simulation Work using Geant3.21 and presented by M. Wood

• Using SIC chambers developed by Northwestern University by M. Velasco and built by Richardson Electronics

 \bullet Using fast amplifier and 100MHz ADC's to measure the time evolution of beam losses along the 1.5 μs pulse length

- Beam Halo imaging technique are also developed
 - Based on Optical Transition Radiation screens
 - An dedicated optical manipulation

Beam Halo measurement on CTF3 in 2003

Beam : 35MeV, 3.5A, 300ns 10µm thick Al screen

Total dynamic range : 10⁴-10⁵

 $5\mu m$ thick Graphite OTR foil

OTR Angular Distribution

• There is a limitation in the minimum divergence we can measure :

$$\sigma_{\min} \approx \frac{1}{10\gamma}$$

• For σ ' > 1/ $\gamma_{\rm r}$ the two lobes pattern disappears

• Small shift of the lobes position for $\sigma' > \sigma'_{min}$ new position at $1/\gamma + \sigma'/2$

• The two lobes are separated by an angle of $2/\gamma$ (neglecting the beam divergence)

• The light intensity increases with the beam energy \propto ln(2 γ)

OTR Angular Measurements on CTF II in 2002

<u>Changing the beam divergence using a set of quadrupoles</u>

OTR Angular Measurements on CTF II in 2002

- Changing the beam energy with the Klystron (modulator) voltage
- Adjusting the RF phase for a minimum energy dispersion

Transverse phase space reconstruction

'Slicing the OTR light in the first image plane by displacing the mask and measuring the beam divergence'

Х

Beam diagnostics classification

Beam diagnostics classification

Level of Difficulty and Reliability

'Beam diagnostics should help you to understand how the beam behaves, it should not be the opposite'

A detector, what for ?

• Online Beam stability \rightarrow non intercepting and reliable Only have access to a partial information (RMS values,...)

• Beam characterization and beam physics study \rightarrow full information Complexity and time consuming

Common development with other e⁺-e⁻ collider projects and 4th generation light source

Very short bunch length (>100fs)

Common development with other e⁺-e⁻ collider projects and 4th generation light source

• Very few microns beam size along the Linac

			$\land \sigma$	1 n!	'Limitations'
•	Optical Transition Radiation	xxxxxx	xxxxxx	xxxxxx	For high current density
	S. Anderson et al, KEK-ATF-2001-08				
	Optical Diffraction Radiation	xxxxxx	xxxxxx	xxxxxx	For low beam energy
	T. Muto et al, Physical Review Letters 90 (2003) 104801				
	Solid Wire scanner	xxxxxx	xxxxxx	xxxxx	For high current density
	Laser Wire Scanner	xxxxx	****	xxxxxx	For low current density &
	R. Alley et al, NIM A 379 (1996) 363				low beam energy
	H. Sakai et al, Physical Review ST AB 4 (2001) 022801 & ST AB 6 (2003) 092802				2802
	W.P Leemans et al, Physical Review Letters 77 (1996) 4182				

Special CLIC/CTF3 diagnostic requirement

Problem for the Drive Beam : Very beam charge → Need non destructive monitor

Specially at low energy where LWS and ODR are not efficient enough

