"All Things Muon"

Daniel M. Kaplan

Transforming Lives. Inventing the Future. www.iit.edu

ICAR Workshop ANL 19–20 May 2004

Outline

- 1. What's a Neutrino Factory?
- 2. Neutrino Factory & Muon Collider physics
- 3. Ionization cooling
- 4. Muon Collaboration R&D program

What's a Neutrino Factory?

S. Geer, Phys. Rev. D 57, 6989 (1998)

• A muon storage ring producing intense beams of high-energy electron and muon neutrinos:

~ MW p beam → high-power target → pions, focused & decay → muons muons bunched, cooled, accelerated, & stored in decay ring w/ long straights
 (Also ∃ Japanese design – does not require cooling but could benefit from it)

Neutrino Factory Physics

• Most fundamental particle-physics discovery of past decade:

🚰 neutrinos mix!

...arguably the leading explanation for the cosmic baryon asymmetry

M. Fukugita and T. Yanagida, Phys. Lett. B174, (1986) 45.

Neutrino Factory Physics (cont'd)

- Raises fundamental questions:
 - 1. What is the neutrino mass heirarchy? (Has e.g. cosmological consequences...)

2. Why is pattern of neutrino mixing so different from that of quarks?

CKM matrix:		PMNS matrix:	$\left(\sim \frac{\sqrt{2}}{2}\right)$	$\sim -\frac{\sqrt{2}}{2}$	$\sin \theta_{13} e^{i\delta}$
$\theta_{12} \cong 12.8^{\circ}$	m e carles	$\theta_{12} = 30^{\circ} \text{ (solar)}$	2	2	13
$\theta_{_{23}} \cong 2.2^{\circ}$	diagonal	$\theta_{23} = 45^{\circ}$ (atmospheric)	$\sim \frac{1}{2}$	$\sim \frac{1}{2}$	$\sim -\frac{\sqrt{2}}{2}$
$\theta_{13} \cong 0.4^{\circ}$		$\theta_{13} < 13^{\circ}$ (Chooz limit)	$\left(\sim \frac{1}{2} \right)$	$\sim \frac{1}{2}$	$\sim \frac{\sqrt{2}}{2}$

3. How close to zero are the small PMNS parameters θ_{13} , δ ?

 \rightarrow are they suppressed by underlying dynamics? symmetries?

These call for a program to measure the PMNS elements as well as possible

Neutrino Factory Sensitivity

Neutrino Factory Physics Strategy

• With suitably chosen baseline(s), comparing $v_e \rightarrow v_\mu \& \overline{v}_e \rightarrow \overline{v}_\mu$ determines mass heirarchy and CP phase δ :

• To set scale, 10^{20} decays with 50-kT detector sees δ down to 8°

 \Rightarrow important to maximize flux!

Muon Collider Physics

- A pathway to *high-energy* lepton colliders
- unlike e^+e^- , \sqrt{s} not limited by radiative effects
- a muon collider can fit on existing laboratory sites even for $\sqrt{s} > 3$ TeV
- *s*-channel coupling of Higgs to lepton pairs $\propto m_{\text{lepton}}^2$

• E.g., $\mu\mu$ -collider resolution can separate near-degenerate scalar and pseudo-scalar Higgs states of high-tan β SUSY

363

Why Muon Cooling?

Neutrino Factory:

- need $\geq 0.1 \,\mu/p$ -on-target \Rightarrow very intense μ beam from π decay \Rightarrow must accept large (~10 π mm·rad rms) beam emittance
- No acceleration system yet demonstrated with such large acceptance
 ⇒ must cool the muon beam or develop new, large-aperture acceleration
 - in current vF studies, cooling $\rightarrow \times 3 10$ in accelerated muon flux

Muon Collider:

• $\mathcal{L} \propto I^2 / \sigma_x \sigma_y \Rightarrow$ big gain from smaller beam

 \Rightarrow to achieve useful luminosity, must cool the muon beam

The Challenge: $\tau_{\mu} = 2.2 \ \mu s$

- What cooling technique works in microseconds?
 - there is only one, and it works only for muons:

Ionization Cooling

G. I. Budker and A. N. Skrinsky, Sov. Phys. Usp. **21**, 277 (1978) A. N. Skrinsky and V. V. Parkhomchuk, Sov. J. Part. Nucl. **12**, 223 (1981)

• A brilliantly simple idea:

- 1. Muons lose energy by ionizing absorber medium
 - reduces all 3 momentum components
- 2. Longitudinal momentum restored in RF cavities

 \rightarrow Net effect: beam divergence reduced at constant average energy

• 2D transverse-cooling rate:

$$\frac{d\varepsilon_{x,N}}{dz} \approx -\frac{1}{\beta^2} \frac{\varepsilon_{x,N}}{E} \left| \frac{dE}{dz} \right| + \beta_{\perp} \frac{\left(0.014 \text{ GeV}\right)^2}{2\beta^3 E m_{\mu} L_R}$$

Competition between energy loss and Coulomb scattering

Note SR analogy

Optimizing Ionization-Cooling Performance

- Locate absorbers at low- β lattice points so that scattering in absorber medium negligible w.r.t. beam divergence
- Focus beam w/ superconducting solenoids for lowest β with most compact lattice (but quads may be cost-effective for large ε @ start of cooling channel)
- Reaccelerate beam with highest-gradient normal-conducting RF cavities (superconducting would quench due to multi-tesla focusing field)
 - minimizes losses due to muon decay

"Simple" (not nec. cheap!) example: absorbers & RF cavities inside long superconducting solenoids:

Analytical Theory of Ionization Cooling

• Approximate 6D ionization-cooling theory worked out and published:

Chun-xi Wang and Kwang-Je Kim, Phys. Rev. Lett. 88, 184801 (2002); Kwang-Je Kim and Chun-xi Wang, Phys. Rev. Lett. 85, 760 (2000); G. Penn and J. S. Wurtele, Phys. Rev. Lett. 85, 764 (2000)

- Predictions similar to those shown above based on particle-tracking codes
- \Rightarrow Muon cooling not a "fluke," say due to delicate choice of parameters
 - on the contrary, it is expected, and with the performance claimed
- Various possible lattices:

Cooling Lattices

 \rightarrow Periodic (alternating-gradient) focusing allows low β w/ much less superconductor

SFOFO Cooling Performance (vF FS-II)

Longitudinal Cooling?

• Transverse ionization cooling self-limiting due to longitudinal-emittance growth

 \Rightarrow need longitudinal cooling for muon collider; could also help for vF

- Possible in principle by ionization above ionization minimum, but inefficient due to small slope d(dE/dx)/dE and straggling
- \rightarrow Emittance-exchange concept:

<u>Ring Coolers</u>

- Combine transverse cooling with emittance exchange
- Allow re-use of (expensive) cooling hardware via multiple passes

(from Palmer MuTAC Review talk 1/14/03)

- could lead to vFac or μ collider that is both cheaper and higher-performance
- injection & extraction appear soluble but require very fast, large-aperture kicker
- performance very sensitive to scattering: LH₂ absorbers with thin windows crucial
- or eliminate interior windows with high-*P* gas absorber?

Key Muon Cooling R&D Issues

- For either cooling approach (linear or circular),
 - 1. Can NCRF cavities be built that provide the required accelerating gradients, operating in multi-tesla fields?
 - 2. Can the heat from dE/dx losses be adequately removed from the absorbers?
 - 3. Can the channel be engineered with an acceptably low thickness of non-absorber material (absorber, RF, & safety windows) in the aperture?
 - 4. Can the channel be designed & engineered to be cost effective?
- We are working within the MuCool Collaboration on all of these issues

High-Gradient-RF-Cavity R&D

ANL / FNAL / IIT / LBNL / UMiss

• Goal:

201-MHz Cu cavity with > 15-MV/m on-axis accelerating gradient, operable in few-T solenoidal magnetic field

- But rapid progress easier with smaller-scale prototypes \rightarrow initial tests at 805 MHz
- Pillbox cavity (cells closed with conducting windows) can save $\approx 50\%$ in peak power

During bake-out at LBL (now under high-power test in Lab G)

Tube Grid Design Studies

LBNL / FNAL / IIT (Alsharoa, Gosz)

- Flat windows may be sub-optimal at 201 MHz
- Grids of gas-cooled Al tubing might be thinner (in rad. len.) & cheaper
- Finite-element-analysis studies in progress at IIT & LBNL
 - Current goal: find manufacturable grid configuration with manageable field enhancement factor at tube surface (work in progress)

4x4 grid of 0.5-cm x & y tubes field enhancement = 3.6

4x4 "waffle" grid of 1-cm tubes field enhancement = 1.8

Field enhancement factors* for cases studied to date:

Tube diam. Grid (cm)	0.50	1.00	1.25	1.50
4×4 regular connected	3.60			
4×4 regular waffle	2.30	1.80		
6×6 regular waffle		1.64	1.40	1.39
6×6 center- concentrated waffle		1.40		

*enhancement factor = ratio of max tube surface field to on-axis accelerating field

Absorber R&D Collaboration

E. Almasri, E. L. Black, D. Bockenfeld, K. Cassel, D. M. Kaplan, A. Obabko *Illinois Institute of Technology**

> S. Ishimoto, K. Yoshimura KEK High Energy Accelerator Research Organization

ICAR groups working cohesively with each other (& with external groups)

M. A. Cummings, A. Dychkant, D. Hedin, D. Kubik *Northern Illinois University**

> Y. Kuno Osaka University

D. Errede, M. Haney University of Illinois at Urbana-Champaign*

> M. Reep, D. Summers University of Mississippi

W. Lau, S. Yang University of Oxford

in collaboration with

D. Allspach, C. Darve, S. Geer, C. Johnstone, A. Klebaner, B. Norris, M. Popovic, A. Tollestrup *Fermilab*

* member, Illinois Consortium for Accelerator Research

Absorber R&D

ANL / FNAL / IIT / KEK / Osaka / Oxford / NIU / UIUC

• 2D transverse-cooling rate:

$$\frac{d\varepsilon_{x,N}}{dz} \approx -\frac{1}{\beta^2} \frac{\varepsilon_{x,N}}{E} \left| \frac{dE}{dz} \right| + \beta_{\perp} \frac{\left(0.014 \text{ GeV}\right)^2}{2\beta^3 E m_{\mu} L_R}$$

 \Rightarrow Absorber material comparison:

Competition between energy loss and Coulomb scattering

Hydrogen is best material by factor ≥ 2

(...all other things being equal, e.g., neglecting effect of containment windows)

Absorber Power Handling

IIT / KEK / NIU / Osaka

- Need to handle 100s of watts per absorber in Study-II scenario
 - \rightarrow kW with more ambitious Proton Driver (4 MW instead of 1 MW *p*-beam power) and/or Neuffer phase rotation (keeps both μ^+ and μ^- simultaneously)
 - \rightarrow ~ 10 kW in ring cooler with ~10 passes
 - State of the art is several hundred W in e.g. SLAC E-158 LH_2 target
- Two possible solutions (both proposed by IIT) being pursued:

• Power-handling limit yet to be established for either approach

Progress in Absorber Windows: 1

IIT / NIU / Oxford / UIUC / UMiss

• To avoid compromising hydrogen's low Coulomb scattering, need containment windows as thin as possible: Windows machined w/

3 iterations of absorber window design:

Windows machined w/ integral flange out of single disk of Al alloy

Established need for containment vacuum surrounding absorber, to satisfy safety guidelines Vacuum window With "inflected" windows & modern Al alloys, merit factor can be as high as ≈ 0.8 (E. Black, IIT)

Progress in Absorber Windows: 2

- FNAL requirement for nonstandard LH₂ containment windows:
 - Series of 4 windows must be destructively pressure-tested
- This was carried out for windows of the "1st-iteration" design:

- Reliability of photogrammetry established
 - ≈10 μ m precision in 3D
 - Can measure both thickness profile and shape
 - Good agreement w/ FEA predictions
 - Good agreement w/ strain-gage data
 - Good agreement w/ CMM data
 - Good agreement w/ micrometer measurements

• Prototypes of latest design now in fabrication at UMiss

LH2 Flow Studies ANL / IIT / Oxford / NIU / UIUC

- Need to optimize LH₂ flow for maximum heat transfer and temperature uniformity
 - Challenging engineering problem
 - Approach:
 - o 2D & 3D FEA (flow-through design)
 - 2D CFD (convection-cooled design)
 - exp'tal tests

(Lau/Yang, Oxford)

(Almasri/Cassel/Obabko, IIT)

LH2 Flow Studies (cont'd)

• Schlieren & Ronchi techniques tested at Argonne using 20 MeV *e*⁻ beam:

• Plan: take data in more configurations & compare with predictions

- Idea: why not eliminate (almost) all the windows?
 - Cooling channel becomes series of RF cavities (in suitable focusing field) filled with high-pressure gaseous H₂, protected against breakdown by the Paschen effect:

static case: $V_s = 0.448 (nd) + 0.6 (nd)^{1/2}$ (*n* = density of atoms or molecules in 10¹⁸/cm) nd (10¹⁸ cm⁻²) 10. 250 300 50 150 200 100 150 d = 0.5 cm 120 E (volts/cm) (k <) 90 103 2% = 0.2 cm = 0·159 cr 60 ന 30 2·54 cm 10² 8000 4000 1.0 100 P20d (Torrcm) p (Torr) Figure 8.13. Theory and experiment compared for hydrogen at 2.8 GHz Breakdown voltages in hydrogen (Müller, 1966. (MacDonald and Brown, 1949. Reproduced by permission of The America permission of Springer-Verlag)

- Physical Society)
- With low-temp operation, could take advantage of reduced Cu resistivity
- Could lead to higher-performance, shorter, cheaper cooling channel with higher-gradient RF cavities

Muons, Inc.

 Muons, Inc. formed 2002 w/ Phase I STTR funding from DOE, designed 805-MHz test cell and took measurements @ FNAL Lab G

805-MHz test cell design

Partially-assembled test cell (Copper-plated SS Conflat disk with electrode)

Note: electrode shape adjusted to tune resonance

- Demonstrated 50 MV/m operation at 805 MHz in ≈12-atm GH2 at 77K
- STTR proposals submitted for Phase II* (201 MHz) and other possible applications of high-pressure RF cavities, e.g.
 - pulse compression*

– 6D cooling*

- * funded in FY03
- gaseous-absorber cooling exp't (MANX)
- Beginning to influence other MC efforts

MuCool Test Area

• Need facility in which to test

- absorbers
- RF cavities
- solenoids
- Show that cooling cell is operable in an intense beam (engineering test, not cooling demo)
- \exists convenient location: end of FNAL Linac has
 - sufficient space
 - 201 & 805 MHz RF power sources (Linac RF test stands)
 - 400 MeV beam up to $2.4 \times 10^{14} p/s \rightarrow 570$ W in 35-cm LH₂ absorber (higher at lower E)

Design Studies & Simulations

(Black, DMK, Roberts, Torun)

- Feasibility Study II:
 - DMK led absorber design study & served as "editor for absorbers"
 - Black responsible for channel integration
- Geant Study-II simulations:
 - Established acceptable range of heat-induced absorber density fluctuations $(\pm 5\%)$
 - Confirmed that "iteration 2" window design was improvement over Study-II performance (not obvious \rightarrow window was thinner at center but much thicker at edges)
 - Code improvements in progress (speed, usability)
- MICE Geant simulation:
 - Geant4 framework developed, now being applied to MICE design issues

- Most recent work in progress: include beamline (for optimization studies)

"Targetry"

- To optimize design of stored-muon facility, need to understand how best to produce muons
- Need to understand how to target multi-MW proton beam safely
 - US-based R&D program centered @ BNL
 - also work in UK & CERN
- Need to know pion-production cross sections at various potential Proton Driver energies
- Goes roughly as P_{beam}
- Reliable data surprisingly sparse
- Experiments to improve this knowledge: E910@BNL, HARP@CERN, MIPP@FNAL

"Study-IIa"

- Study-II vF design cost estimate ≈ 1.9 G\$
- Desirable to seek more cost-optimized design
- APS 6-month study provides opportunity
- BNL iterating/optimizing design including
 - Neuffer RF phase rotation
 - simpler cooling channel
 - larger-aperture acceleration using cheaper technology

Summary

- Continued progress developing components for a muon cooling channel
- Ongoing 805 MHz RF R&D program developing techniques required for low-dark-current, high-gradient NCRF cavities operable at high *B*
- Healthy progress developing LH₂ absorbers with thin windows
- MuCool Test Area will soon be available
- We are training Ph.D. and M.S. students in beam physics & engineering
 already 1 M.S. completed, several Ph.D. and M.S. degrees in progress
- Benefiting greatly from international collaboration
 - Japan contribution to absorbers
 - UK contribution to absorber and cavity windows and flow sims
 - Cooling experiment proceeding via international MICE Collaboration
- IIT ICAR group has had substantial impact on progress & viability of muon cooling R&D
- Muon R&D is important "fallback" in case LC not built @ FNAL
- Preserves option for US to continue to lead in neutrino physics