MTA
Instrumentation

M. Haney
University of Illinois at Urbana-Champaign
19 May 2004
MTA Instrumentation Data Paths

To PC/LabView consumers

To/From ACNET sources (i.e. other IRMs)

FISO

Lakeshore(s)

PC

IRM

16 chan ADC

350'

In, on, or around the absorber

Fast, local signals (e.g. piezo transducer)

Slow, local signals (e.g. magnet current(s))

Strain, temp

temp

19 May 2004 M. Haney
Signals inside (the cryostat)

- 32 (cryo) temperatures
 - 16 sensors inside absorber, 16 outside
 - Front and back faces
 - readout via Lakeshore 218S(s), GPIB + LabView (PC)
 - Multiple fibers
 - FISO fiber optic channels (4 fibers)
 - strain, temperature
 - Laser occlusion (2 fibers)
 - Edgar Black looking at a scheme using standard data fibers…
(more) Signals inside

- Piezo vibration sensor
 - Available channel, but no sensor
 - Readout via (16 chan/12 bit) ADC and LabView (PC)
- Local (64 chan/16 bit) IRM channels
 - Readout via LabView
Signals outside

• Many voltages, currents, temperatures, pressures
 – magnets, beam position monitors, etc.
 – Most available from local IRM or ACNET (other IRMs)
 • via LabView
 – or Quadlog-PLC
 • Dedicated controller(s) used by Cryo system
Instrumentation (1)

• Lakeshore 218S
 – 8 channel cryo temperature monitor
 • 20mV (diodes) or 50 mΩ (RTD) resolution
 – 10’s of mK at 20K
 – 16 readings/s (/channel)
 – GPIB interface (to PC)
 – 4 units in-hand (and a spare)
 • Will need to consider (re)calibration protocols
Instrumentation (2)

- **CX-1030-SD Cernox RTD sensors (12)**
 - -6.7 Ω/K at 20K (e.g. calibrated device X28829)
 - Better suited for lower temperatures
 - Recommended for use in magnetic fields (B<19T)
 - Rad hard

- **CX-1050-SD Cernox RTD sensors (24)**
 - -25 Ω/K at 20K (e.g. calibrated device X27990)
 - Fermi “favorite”

- **Also**
 - TG-120PL GaAlAs diodes (4)
 - -180mV/K at 4.2 K
 - for B < 5 T, but no longer claimed to be rad hard…
Instrumentation (3)

- **FISO Fiber-optic strain and temperature**
 - BUS chassis, with 4 (up to 8) modules
 - 1000 readings/s
 - RS-232 interface (to PC)
- **FOS-N strain sensors**
 - +/- 5000 με; 0.01% full scale; 0.2mm O.D.
- **FOT-L temp sensors**
 - 0.1 K resolution; 1.5mm x 32mm (10mm active)
 - Slow: 1.5 second response…
Instrumentation (4)

• Gateway E-4000 PC
 – 1.8 GHz, 1Gbyte RAM, 0.5Gbyte cache
 – 120Gbyte disk, Windows 2000
 – 15” LCD flat panel display
 – 640x480 CCD camera, microphone

• PCI-MIO-16E-1
 – 16 channel ADC, 1.25 Msample/s, 12 bits, +/-10 V

• Tripplite Internet Office UPS
 – 500 VA
 – 30 minutes (nominal) power for PC
 • But mostly intended as power filter for Lakeshore 218’s
Two Safety Possibilities (1)

• Gas-purged box

- Gas-purged box
- Barrier(s)
- IRM
- LakeShore(s) (temp)
- FISO
- PC w/16 chan
- ADC
- UPS

Network

ACNET

Hazard

Safe

H₂?

Sealed Conduit(s)

O₂!

power

network

LH
Two Safety Possibilities (2)

• Intrinsically safe

- Intrinsically safe signal conditioners and transmitters (as needed)
- Hazard
- Safe
- Sealed Conduit(s)
- Barrier(s)
- IRM
- LakeShore(s) (temp)
- FISO
- PC w/16 chan ADC
- UPS
- ACNET
- power
- network

(Up to) 350 feet
(basic) Barrier

“safe circuit”

fuse

Power + Signal

Return

Ground
Instrumentation (5)

- MTL7055ac barriers
 - Low level AC
 • 24 Ω per line
 • 3 V max

- MTL7060ac barriers
 - Star-connected AC
 • 101 Ω per line
 • 8.5 V max
MTA Instrumentation: Data Paths: LabView Perspective

FISO
Strain, temp

Lakeshore(s)
temp

PC
16 chan ADC

IRM

To PC/LabView consumers

From ACNET sources

Fast, local signals (e.g. piezo transducer)

Slow, local signals (e.g. magnet current(s))
MTA Instrumentation: Data Paths: ACNET Perspective

FISO
Strain, temp

Lakeshore(s)
temp

PC
16 chan ADC

IRM
Slow, local signals (e.g. magnet current(s))

Fast, local signals (e.g. piezo transducer)

To ACNET consumers
Instrumentation (6)

• **IRM**
 – 64 channel multiplexed ADC
 • 16 bit, 100 Ksamples/s
 – ACNET network connection
 • All PC data will be posted to IRM for ACNET access
Wire Considerations - inside

• **QuadTwist**
 – 2-pair, 36 AWG phosphor bronze
 – Formvar insulated, color-coded
 – Compared to 32 AWG manganin
 • QT is pre-twisted, color coded pairs, 0.63 smaller, yet 0.6 less DC resistance(!)
 • But, QT has 1.9 greater thermal loss, and end-prep is (somewhat) delicate work
 – If I can do it, it can’t be that delicate…
Internal Shielding

- Stainless steel (36 AWG) drain, with foil around pairs
 - See next slide (foil+drain)

- Stainless steel braid around all
 - Easier to handle than stainless conduit
Wire Considerations - outside

- Shielded twisted pair
 - Using 2-pair here
 - foil-out, common drain
 - Recommend
 Belden 9332 (8 runs)
 - Power Limited Tray Cable
 - 9-pair, 22AWG, foil-in, drain-per-pair
 - Consistent with
 Lakeshore 218 shielding
 » 4-wire measurement, shield-per-pair
Fiber

• For FISO sensors
 – 50/125, multimode
 – Recommend L-Com FOB500B2-M (4 runs)
• 2-fiber bulk breakout
End
Status

• Hardware acquired
 – PC, FISO, Lakeshore (temp) + sensors, IRM, etc.
 • All major items in-hand

• Software written
 – IRM communications: to, from
 – Lakeshore readout
 – FISO readout
 • All major elements written and integrated
 – For one Lakeshore 218…

• Intrinsically safe solutions (barriers)
Testing

- Lakeshore 218 monitor
- MTL7055ac (low level) and MTL7060ac (star-connected)
 - Intrinsically Safe Barriers
- 23m (75 ft) of shielded twisted pair
 (repeated with 75+375 ft)
 - 2-pair, 22 AWG, belfoil (out), common drain
 - $76/500ft from Digikey
- 30 Ω on each of the 4 wires,
 - to mimic 2m of 32 AWG manganin wire
 - Lakeshore MW-32
 - 13.5 Ω/m at 4.2K, 14.3 Ω/m at 77K
- 1000 Ω load resistor
 - Compare to CX-1050-SD-4L
 - @14.000K, R = 819.7521 Ω; dR/dT = -50.16117 Ω/K
 - @20.000K, R = 607.6232 Ω; dR/dT = -25.14299 Ω/K
Results

• Cleanliness is paramount!
 – 10 μA excitation, so nanoamps of leakage are significant!

• **Shielding is vital**
 – Strong sensitivity to HBM interference if shield not connected

• **Worst-case deviation: 0.5 Ω**
 – 1000 Ω on back of 218, vs full test setup
 • At $\frac{dR}{dT} = -25.14299 \, \Omega/K$ …
 • 0.0199 K (systematic) error
Other/Work in Progress

• Recently acquired
 – Keithley 7001 switch mainframe,
 7013s isolated switch module

• Recently purchased
 – Keithley 2700 6 ½ digit multimeter

• Goals
 – Confirm quantitative cleanliness (little/no leakage)
 – Confirm (non)effect of thermoelectric (junction) voltages
Backup Slides
Open Issues

- **Wire+Shielding Concerns**
 - Cable plant into solenoid
 - Shielded-twisted pairs (two pairs per Cernox)
 - Shield drains carried from Lakeshore(s) to sensors (not grounded)
 - Grounding
 - Details depend on overall MuCool grounding scheme
 - Common mode (surges) due to magnets
 - Need to protect electronics without burning barriers
 - Noise/sensitivity issues
Open Issues (2)

• FISO temp/strain sensors
 – Qualification at cryogenic temps
• Software Concerns
 – System integration
 • 3 more LakeShore 218’s
 – Remote control of PC
 • PCAnyWhere vs VNC
 – Fermi network security policies…