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Abstract

I review the theoretical status of CP violation in �! p�� comparing the standard model
expectations with what could happen in new physics scenarios.

1 Introduction

In nonleptonic hyperon decays such as � ! p�� it is possible to search for CP viola-
tion by comparing the decay with the corresponding anti-hyperon decay [1]. The Fermilab
experiment E871 is currently searching for CP violation in such a decay and is sensitive to
certain types of physics beyond the standard model. The observable provides information
that is complementary to that obtained from the measurement of �0=�. This has motivated
several studies of this mode within the last few years. I will review these studies pointing
out other features that may be relevant for the design of a new experiment.

2 Fermilab Experiment E871 { HyperCP

The reaction of interest for E871 is the decay of a polarized �, with known polarization
~w, into a proton (whose polarization is not measured) and a �� with momentum q. The
�nal p�� state can be in an S-wave or a P-wave, and in an I = 1=2 or I = 3=2 state. The
observables are the total decay rate and a correlation in the decay distribution of the form

d�

d

� 1 + �~w � ~q (1)

The branching ratio for this mode is 63:9% and the parameter � has been measured to be
� = 0:64 [2]. The CP violation in question involves a comparison of the parameter � with
the corresponding parameter �� for the reaction ��! �p�+.
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It is standard to write the amplitudes in terms of their isospin components in the form

S = S1e
iÆS
1 + S3e

iÆS
3

P = P1e
iÆP
1 + P3e

iÆP
3 (2)

A �I = 1=2 rule is observed experimentally, S3=S1 � 0:026 and P3=P1 = 0:03 � 0:03 [3].
The strong �N scattering phases have been measured for the I = 1=2 channel, ÆS1 � 6o and
ÆP1 � �1o [4]. The I = 3=2 scattering phases have been measured with large errors but are
not needed here. They would be needed if one wants to measure a partial rate asymmetry.

To discuss CP violation, we allow the amplitudes in Eq. 2 to have a CP-violating weak
phase, Si ! Si exp(i�

S
i ) and Pi ! Pi exp(i�

P
i ) and compare the pair of CP conjugate

reactions. CP symmetry predicts that � = �� and that �� = ��. One therefore de�nes the
CP-odd observables

� � �� ��

� + ��
�
p
2
S3
S1

sin(ÆS3 � ÆS1 ) sin(�
S
3 � �S1 )

A(�0

�
) � � + ��

�� ��
� � sin(ÆP1 � ÆS1 ) sin(�

P
1 � �S1 ) � 0:12 sin(�P1 � �S1 ) (3)

The partial rate asymmetry is very small, being suppressed by three small factors, S3=S1,
strong phases, and weak phases. It represents an interference between amplitudes with
�I = 1=2 and �I = 3=2. The asymmetry A(�0

�
), on the other hand, is not suppressed by

the �I = 1=2 rule, as it originates in an interference of S and P-waves within the �I = 1=2
transition. For this reason, the observable A(�0

�
) is qualitatively di�erent from �0=�.

The experiment E871 at Fermilab produces the polarized � from the weak decay �� !
��� and for this reason what they measure is actually the combinationA(�0

�
)+A(��

�
). Their

expected sensitivity is 10�4. The weak phases in �� decay (within the standard model) have
been estimated to be about two times smaller than those in � decay [5]. Similarly, the strong
phases in �� decay are estimated to be of order 1o [6, 7] and therefore �ve times smaller
than the strong phase di�erence in � decay. For these two reasons we expect that the E871
measurement will be dominated by A(�0

�
). For the future it is important to keep in mind

that the strong � � � scattering phase will be measured by E871, and that if it turns out
to be larger than the theoretical expectation, it is possible that the CP violating asymmetry
could be larger in � decay.

If a future experiment is designed so that the polarization of both the decaying hyperon
and the decay product can be measured, there is a third observable to consider. In this case
the decay angular distribution has another term

d�

d

� � � �+ � < ~�B > � (< ~�B0 > �~q ) (4)

and CP predicts that �� = ��. The third CP odd observable is then

B � � + ��

� � ��
� sin(�P1 � �S1 )

tan(ÆP1 � ÆS1 )
(5)
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The expectation is that B >> A >> �, but there are certain caveats. The observable B,
although larger, is perhaps misleading in that it is much more diÆcult to measure than A as
it requires the determination of both polarizations. Also, the observable B is in some sense
arti�cially large in that it has been normalized to an already small quantity (�). Finally, in
the case of the 
� decay, the �I = 1=2 rule is not as pronounced as in other hyperons, and
the rate asymmetry � could be larger.

3 Standard Model

Within the standard model one writes the j�Sj = 1 e�ective weak Hamiltonian as a
sum of four-quark operators multiplied by Wilson coeÆcients in the usual way,

H =
GFp
2
V �

udVus
12X
i=1

ci(�)Qi(�) (6)

This is, of course, the same e�ective Hamiltonian responsible for Kaon nonleptonic decays
and is very well known. In particular the Wilson coeÆcients, ci(�) have been calculated in
detail by Buras and his collaborators [8]. The remaining problem is to calculate the matrix
elements of the four-quark operators between hadronic states. This problem has not been
resolved yet, and there is large theoretical uncertainty in these matrix elements. The usual
way to proceed (which is the same as in kaon physics) is to take the real part of the matrix
element from experiment (assuming CP conservation) and to use the calculated imaginary
parts.

Unlike the case of �0, where both �I = 1=2; 3=2 amplitudes are important, A(�0
�
) is

dominated by CP violation in �I = 1=2 amplitudes. One expects that the asymmetry
will be dominated by the penguin operator with small corrections from other operators. A
detailed study using vacuum saturation to estimate the matrix elements supports the view
that Q6 is dominantly responsible for A(�

0
�
) [9].
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Figure 1: a) B ! B0 transition due to Q6, solid square. b) S-wave obtained from (a) via a soft-pion theorem.
c) P-wave obtained from (a) with strong pion emission (solid circle).

Once we have determined that only Q6 is important, the strategy is to calculate the
matrix elements of the form < B0jQ6jB > using a model, and then use these results to treat
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the nonleptonic hyperon decay at leading order in chiral perturbation theory as sketched in
Figure 1. Equivalently, the S-waves are obtained with a soft-pion theorem and the P-waves
with baryon poles. At present, the baryon to baryon matrix elements are taken from the
MIT bag model calculation of Ref. [10].

It is diÆcult to quantify the theoretical error in this calculation. There are the obvious
uncertainties in the short distance parameters as well as errors in the value of the strong
phases. However, of greater concern is the issue of assigning an error to the hadronic matrix
elements. Even if we assume that the baryon to baryon matrix elements calculated in
the MIT bag model are exact, we know from the study of CP conserving amplitudes that
non-leading-order terms in chiral perturbation theory can be as large as the leading order
amplitudes. For example, the S-wave imaginary part calculated in vacuum saturation is a
higher order correction to the bag-model plus soft pion theorem amplitude outlined above,
but it is larger [9]. To get an idea for the impact of this error we assign an overall error
of a factor of two to the calculated matrix elements plus an overall 30% uncorrelated error
between S and P-waves. Combining all this results in

A(�0

�
) = (�3:0� 2:6)� 10�5: (7)

4 Beyond the Standard Model

There have been several estimates of A(�0
�
) beyond the standard model. For the most

part these studies discuss speci�c models, concentrating on one or a few operators and
normalizing the strength of CP violation by �tting �. Some of these results (which have not
been updated to incorporate current constraints on model parameters) are:

A(�0

�
) =

8>>><
>>>:

�2� 10�5 SM [5]
�2� 10�5 3 Higgs [5]
0 Superweak
6� 10�4 LR [11]

(8)

Perhaps a more interesting question is whether it is possible to have large CP violation in
hyperon decays in view of what is known about � and �0. This question has been addressed in a
model independent way by considering all the CP violating operators that can be constructed
at dimension 6 that are compatible with the symmetries of the standard model [12]. With
this general formalism one can compute the contributions of each new CP violating phase
to �; �0, and A(�0

�
). Of course, there is the caveat that the hadronic matrix elements cannot

be computed reliably. Nevertheless, one �nds in general that parity even operators generate
a weak phase �P1 and do not contribute to �0. Their strength can be bound from the long
distance contributions to � that they induce. Similarly, the parity-odd operators generate a
weak phase �S1 and contribute to �0 (but not to �).

The constraints from �0 turn out to be much more stringent than those from �, and,
therefore, the only natural way (without invoking �ne cancellations between di�erent oper-
ators) to obtain a large A(�0

�
) given what we know about �0 is with new CP-odd, P-even
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interactions. Within the model independent analysis, one can identify a few new operators
with the required properties, that can lead to [12]

A(�0
�
) � 5� 10�4 P�even;CP�odd (9)

This possibility has been revisited recently, motivated in part by the observation of �0.
The average value �0=� = (21:2 � 4:6) � 10�4 [13] appears to be larger than the standard
model central prediction with simplistic models for the hadronic matrix elements. This has
motivated searches for new sources of CP violation that can give large contributions to �0, in
particular, within supersymmetric theories. One such scenario generates a large �0 through
an enhanced gluonic dipole operator [14]. The e�ective Hamiltonian is of the form

Heff = (Æd12)LRCg
�d���t

a(1 + 5)sG
a��

+ (Æd12)RLCg
�d���t

a(1� 5)sG
a�� (10)

The quantity Cg is a known loop factor, and the (Æd12)LR;RL originate in the supersymmetric
theory [15]. Depending on the correlation between the value of (Æd12)LR and (Æd12)RL one gets
di�erent scenarios for �0 and A(�0

�
) as shown in Figure 2 [16]. For example, if only (Æd12)LR
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Figure 2: The allowed regions on (j(�0=�)SUSY j; jA(�
0

�
)SUSY j) parameter space for three cases: a) only

Im(Æd
12
)LR contribution, which is the conservative case (hatched horizontally), b) only Im(Æd

12
)RL contribution

(hatched diagonally), and c) Im(Æd
12
)LR = Im(Æd

12
)RL case which does not contribute to �0 and can give a large

jA(�0

�
)j below the shaded region (or vertically hatched region for the central values of the matrix elements).

The last case is motivated by the relation � =
p
md=ms. The vertical shaded band is the world average [13]

of �0=�. The region to the right of the band is therefore not allowed.

is nonzero, there can be a large �0 [14], but A(�0
�
) is small as in the 3-Higgs model of [5].

However, in models in which Im(Æd12)LR = Im(Æd12)RL the CP violating operator is parity-
even. In this case there is no contribution to �0 and A(�0

�
) can be as large as 10�3 [16]. It

is interesting that this type of model is not an ad-hoc model to give a large A(�0
�
), but is

a type of model originally designed to naturally reproduce the relation � =
q
md=ms, as in

Ref. [17], for example.
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5 Conclusion and Comments

My usual conclusions for this kind of talk are that:

� A(�0
�
) is likely to be signi�cantly larger than A(��

�
).

� A(�0
�
) = (�3:0 � 2:6) � 10�5 is our current best guess for the standard model and

the theoretical uncertainty is dominated by our inability to calculate hadronic matrix
elements reliably. For this reason, the error assigned to this quantity is no more than
an educated guess.

� A(�0
�
) can be much larger if CP violation originates in P-even new physics. A speci�c

realization of this scenario is possible in supersymmetric theories leading to A(�0
�
) as

large as 10�3.

For a design of a future experiment I would add that:

� A search for �S = 2 hyperon nonleptonic decays is also a useful enterprise as it provides
information that is complementary to what we know from K � �K mixing [18].

� A CP-violating rate asymmetry in 
 ! �� decay can be as large as 2 � 10�5 within
the standard model (and up to ten times larger beyond), much larger than the corre-
sponding rate asymmetries in octet-hyperon decay [19].

� Depending on the true (measured) value of the strong phases for ��� scattering, it is
possible that the � system may have larger signals of CP violation than the � system.

� A nonzero result for A(�0
�
) at the 10�4 level would almost certainly indicate non-

Standard Model physics.

� A nonzero result for A(�0
�
) at the 10�5 level would leave us in a situation similar to

the current case of �0=�. It could be standard model, but it could also be something
else and it would be extremely diÆcult to extract fundamental parameters from the
measurement.

� A null result for A(�0
�
) at the 10�6 level would not rule out the standard model with

our current understanding of hadronic matrix elements. The only way I see for this
understanding to improve is if the problem can be addressed in the lattice. At this
point in time it seems that the only catalyst that will force the lattice community to
investigate these issues is a nonzero result from E871.

This work was supported by DOE under contract number DE-FG02-92ER40730.
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