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Abstract

We give a personal overview of some of the unsolved problems related to hyperon decays.
We cover nonleptonic decays, radiative decays and magnetic moments. Some of the theoretical
issues are also touched upon.

1 Introduction

While the frontier of high energy physics marches on to higher and higher energies,
there are many unsolved puzzles left over in low-energy physics. Hyperon decays account
for many of them. These puzzles are generally not considered serious enough to deserve
major attention. Our inability to calculate accurately with the strong interaction is usually
the reason invoked to explain why these puzzles remain, and why they may not be directly
relevant to our understanding of the fundamental physics.

Nevertheless, one should be reminded that, even if their solutions do not require changes
in the fundamental physics, it is still of utmost importance to understand the dynamics of
low-energy hadronic physics through the thicket of the strong interaction. In addition, one
should keep in mind that surprises can potentially occur that alter our understanding at
a fundamental level. One example is the potential new source of CP violation that may
reveal itself in hyperon decays. There are of course many other corners in which new physics
may have already revealed itself in the data, but is not yet recognized by us because of our
inability to quantify the strong interaction. One example that stands out is the �I = 1=2
rule that had been repeatedly used in the literature to motivate new physics in the past.

Since hyperon decays is a vast and diÆcult subject [1], it is beyond my ability to review
the �eld in detail. My goal is only to recount some studies with some personal perspective
so as to help motivate more future experiments on this subject.
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2 Problems and Tools

Various tools or models have been invented to understand hadronic dynamics without
facing the strong-coupling issues head on. One can start by taking advantage of only the
symmetry property which presumably is respected by the strong dynamics, except for the
potential spontaneous symmetry breaking by vacuum condensates. One �rst identi�es, or
assumes, the low-energy degrees of freedom and their associated symmetry, and then pro-
ceeds to write down the most general low-energy e�ective theory describing these degrees of
freedom consistent with the required symmetry. This is the approach taken by chiral per-
turbation theory (ChPT) [2] and the QCD sum rule [3]. These low-energy e�ective theories
typically involve in�nite numbers of terms, or couplings. To make such theories useful some
expansion parameters and an associated cuto� scheme are necessary to derive predictions.
For example in the simplest ChPT, the octet of Goldstone bosons associated with chiral-
symmetry breaking are identi�ed as the low-energy degrees of freedom, and using energy and
momentum as expansion parameters, an in�nite series of Lagrangian terms can be written
down according to the chiral symmetry. The higher-dimensional operators are suppressed
by powers of p=�� where �� is the chiral-symmetry-breaking scale. Similar expansion series
are employed in the QCD-sum-rule approach.

Unfortunately, there is no guarantee either that the expansion is convergent, or that
the degrees of freedom included are suÆcient. This is especially the case when the energy
involved in the hadronic process is not limited to very small p=�� and can sometimes be quite
close to where the high resonance occurs. In such a case it is often impossible to justify the
approximation or to account for the data without extra inputs. However, there are so far no
reliable principles about how such extra inputs should be invoked or deployed. As a result,
the theory has degenerated into models that are mostly invoked to account for particular
special subsets of phenomenology. For example, it is well known that the lower-order chiral-
perturbation theory cannot account for the data on hyperon radiative decays [4, 5] even after
the heavy-baryon chiral-perturbation-theory formalism is employed [6, 7, 8]. In an attempt
to resolve this puzzle, some additional resonances have been added in the analysis recently
[9]. While the resulting \model" can account for the data (in fact it can account for the
data in more than one way), it is not clear how much fundamental understanding is actually
gained in the process. With these general comments on the theoretical diÆculties, we can
go over the speci�c challenges.

The challenges facing us in hyperon decays can be summarized in the following cate-
gories:

1. CP violation;

2. Semileptonic decays;

3. Nonleptonic decays;

4. Radiative decays;

5. Magnetic moments.
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I shall leave the topic of CP violation to German Valencia and the topic of semileptonic
decays to Earl C. Swallow in this workshop.

3 Nonleptonic Decays

The nonleptonic decays, B ! B0�, include:

�! p�� ; �! n�0 ;

�+ ! n�+ ; �+ ! p�0 ; �� ! n�� ;

�0 ! ��0 ; �� ! ��� :

The amplitude can be written in matrix form as

M = �uB0(p 0)(A+B5)uB(p)

where the A amplitudes are parity violating and S-wave, while the B amplitudes are parity
conserving and P-wave.

3.1 �I = 1=2 Rule

Each amplitude can be further decomposed into two isospin channels. For example, the
A amplitude for � ! p�� can be decomposed into A(� ! p��) =

p
2A

1=2
��
� A

3=2
��

and

similarly for the B amplitudes. Experimentally [10], the ratio A3=2=A1=2 for each S-wave (A)
or P-wave (B) amplitude is found to be small and of the order of that in the nonleptonic
kaon decays. For example,

A3=2

A1=2
=

0
B@

S P

� 0:014 0:006
� �0:017 �0:047
� 0:034 0:023

1
CA

The fact that these ratios, as well as the corresponding one in kaon nonleptonic decays,
are all of the order of 0.02 in absolute value indicates that the �I = 1=2 rule may reect
something general about the strangeness-changing nonleptonic decays. However, so far we
have not been able to understand this selection rule in general.

For example, in kaon decays, the factor of 20 in �I = 1=2 enhancement is partially
accounted for (by a factor of 3 to 4) by the renormalization group (RG) e�ect of QCD between
the weak scale and the low-energy kaon scale. However, numerically this enhancement is
still insuÆcient and this actually leads to many proposals in the literature of new physics to
account for it.

For hyperons, the understanding improves a little bit. The similar RG enhancement
e�ect is still operating. Pati and Woo, and Miura and Minamikawa [11], discovered another
potential enhancement e�ect. They observed that, using a Fierz transformation, the O�I=3=2
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operator that can mediate hyperon decay can be written in such a way that it is symmetric
under the exchange of color indices of either the (u; s) pair or the (d; s) pair. If the baryons
are taken naively as consisting of three valence quarks only, then the antisymmetry of the
color wavefunction as well as this color property of the �I = 3=2 operator imply that
only the �I = 1=2 operator can mediate the transition <B0 jHW jB >, where HW is the
weak Hamiltonian, that is, < B0jO�I=3=2jB > = 0. Of course, B ! B0 matrix elements
are not the only mechanism for B ! B0� decays. And the baryon wavefunction is not
exactly three-quark. However, it is a good indication that the �I = 1=2 amplitudes are
dynamically favored. The most unsatisfactory aspect of this explanation is probably that
the same mechanism clearly does not apply to kaons. Therefore it does not provide a
general understanding of the strangeness-changing nonleptonic decays. Nevertheless, with
such a qualitative mechanism at hand, one can conclude that, overall, the �I = 1=2 rule is
probably not as serious a problem theoretically as in the case of kaons.

3.2 Nonleptonic enhancement

The data clearly show that the typical nonleptonic branching ratios, say, �(�! p��),
are about 103 larger than the typical semileptonic ones, say, �(� ! pe��e). Why? We
have not been able to account for this based on fundamental principles. There were various
attempts to resolve this di�erence using the quark model plus some QCD inputs many years
ago. However, none can be considered compelling. This problem has not received very
much recent attention. Nevertheless, I am wondering whether one can derive some better
qualitative understanding by learning from the recent work on related issues in the charm
and especially the B systems, such as heavy quark perturbation theory [12] or QCD-inspired
factorization models [13].

3.3 The S-wave/P-wave problem

In chiral models or the current-algebra approach, S-wave (A) is due to a contact term or,
in ChPT language, the lowest order term in the chiral Lagrangian. It is typically represented
as in Fig. 1a. Note that the same vertex does not contribute to the P-wave amplitudes, B.
To get P-wave amplitudes, one needs to invoke the pole diagrams in Figs. 1b and 1c. The
lowest order weak Lagrangian gives

L0W = hDTr( �Bf�;Bg) + hFTr( �B[�;B])

where � = �y�6�, �
2 = � is the usual Goldstone boson in matrix form. L0W contributes to

S-wave amplitudes, A, directly, but not to B. The two parameters hD and hF can be used
to �t the S-wave amplitudes quite well at this order. In particular, A(�+ ! n�+) is found
to be zero at this order while experimentally, indeed, it is much smaller than the others.
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Figure 1. Diagrams for B ! B0�. Here circles and squares represent strong and weak vertices

respectively.

Using the �tted hD and hF , together with strong-interaction parameters, one can calcu-
late the pole diagrams and predict the P-wave amplitudes, B. The result turns out to be a
poor �t to many of the B amplitudes extracted from the data. Actually, alternatively, one
can also choose to use hD and hF to �t the P-wave amplitudes, and use them to predict
S-wave amplitudes. The result is an equally poor �t. The is the famous S-wave/P-wave
problem.

There are a few potential ways out of the puzzle. One can see if the inclusion of a
higher-order e�ective Lagrangian can rectify the situation. However, there are just too
many parameters in the next-order Lagrangian and there is no unique, convincing �t to the
data. Alternatively, one can adopt a model that includes new resonances, such as spin-1/2,
parity-odd resonances or spin-1/2, parity-even Roper resonances, as the intermediate states
B00 in the pole diagrams [9]. The result can �t both S- and P-wave amplitudes, however the
�t is clearly model dependent.

4 Radiative Decays

The radiative decays, with branching fractions as reported in [10], are:

�+(uus)! p(uud) BF � (1:23� 0:05)� 10�3 **
�0 ! n BF too small to see due to electromagnetic decay
�0 ! � BF � 100% electromagnetic decay
�0 ! �0 BF � (3:5� 0:4)� 10�3

�0 ! � BF � (1:18� 0:30)� 10�3

�! n BF � (1:75� 0:15)� 10�3

�� ! �� BF � (1:27� 0:23)� 10�4 **

(Note that ** are charged modes between U-spin doublets.)

Generally, the amplitudes can be rewritten as

A = � e

MB +MB0

i���q��u(p0)���(C +D5)u(p)
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Table 1: Present status of decay rates and asymmetry parameters. The numbers are the combined weighted
mean from Ref. [4]. Neither the decay rate nor the asymmetry parameter for �0

! �+ have been measured.

Bi ! Bf +  � [10�18 GeV] � Ref.
�! n+  4:07� 0:35 { [15]
�0 ! � +  2:4� 0:36 0:43� 0:44 [16]
�0 ! �0 +  8:1� 1:0 0:20� 0:32 [17]
�+ ! p+  10:1� 0:5 �0:76� 0:08 [18, 19]
�� ! �� +  0:51� 0:092 1:0� 1:3 [20]

where C is the parity-conserving magnetic dipole transition (M1) and D is the parity-
violating electric dipole transition (E1). The decay rate is � / jCj2 + jDj2. The asymmetry

is A =
2Re(C�D)
jCj2 + jDj2 , that is, one needs both nonzero C and D amplitudes to get nonzero

asymmetry. There is an old theorem [14] by Hara regarding the vanishing of D amplitudes.

4.1 Hara's Theorem

Hara's Theorem: Assuming that the amplitudes are not singular in the SU(3)F limit,
parity violating D amplitudes must vanish for decays between states of a U -spin doublet in
the SU(3)F limit.

The theorem implies that

D(�+ ! p) = D(�� ! ��) = 0

and as a result the asymmetries A(�
+ ! p) = A(�

� ! ��) = 0.

Accepting the assumption of Hara's theorem, even when SU(3) breaking is taken into
account, the asymmetry A should remain small. Unfortunately, experimentally A(�

+ !
p), which is the only one measured to be nonzero, was found to be �0:76 � 0:08, indeed
large and negative. The others listed in Table 1 have much larger errors.

The hadronic models did not have a great deal of success in explaining the details of
the data. All the models of this type (except those that include vector mesons) preserve
Hara's theorem in their formulations. General analyses which include SU(3) breaking [21]
actually predict a small and positive asymmetry for the �+ decay while the experimental
result is negative and relatively large. Models that assume vector-meson dominance [22] can
introduce e�ects that violate Hara's theorem due to mixing of vector mesons with the photon.
In models using quarks, it was pointed out [23] that the diagrams in which a W boson is
exchanged between two constituent quarks can give rise to violation of Hara's theorem. In
addition, models which include vector-meson dominance are in better agreement with the
data, though the situation is still not satisfactory. Among hadronic models, the observed
negative asymmetry parameter for �+ decay is best accounted for using QCD sum rules [3].
Other approaches can be found in Refs. [24, 25, 26]. Detailed overviews on both experimental
and theoretical aspects of weak radiative decays of hyperons are given in Refs. [18, 4, 5].
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Many papers [27, 28], including some recent ones [28], questioned the assumption of the
Hara Theorem on general grounds. The point is that it is possible that the parity-violating
amplitude D becomes singular when one takes the SU(3) limit. This points out that how
one treats the SU(3) breaking can have a crucial inuence on the outcome of the analysis.
As elaborated in the magnetic moment section below, we believe that more careful analyses
are still wanting.

One may try to employ ChPT, useful in describing low-energy hadronic processes in-
volving only mesons, to tackle hyperons. For application to processes involving baryons, it
is most consistently formulated in the heavy-baryon formulation [12], in which the SU(3)-
invariant baryon mass, _m, is removed by a �eld transformation (see Ref. [6] for details). In
this approach an amplitude for a given process is expanded in external pion four-momenta,
q, baryon residual four-momenta, k, and the quark mass, ms. If one neglects the up and
down quark masses, one can assume that q, k, and ms are of the same order and represent
their value as E (and adopt the convention that k and ms are of the same order in the chiral
expansion). Perturbation theory is reliable only when E is smaller than the chiral-symmetry-
breaking scale ��. In the heavy-baryon formulation there is an additional expansion in 1= _m.
However, all these terms can be e�ectively absorbed in counterterms of the theory [6, 7, 8].

Weak radiative decays of hyperons have been studied before in the context of ChPT
by Jenkins, Luke, Manohar and Savage [26] and Neufeld [25]. Jenkins et al. and Neufeld
calculated the amplitude up to the one-loop level. These loop diagrams give contributions
to the amplitudes which are at least of O(E2) in the chiral expansion. However, tree-
level direct-emission diagrams from the next-to-leading-order weak Lagrangian, which give
contributions of O(E) to the amplitudes, were not considered [6, 7]. In a series of papers
[6, 7, 8] we consistently calculated the leading-order amplitude of weak radiative decays of
hyperons in ChPT. At this order, no loop contributions need to be considered. However,
one does need to take into account the higher-order terms in the weak chiral Lagrangian.
We showed that these terms give rise to a violation of Hara's theorem. As a consequence
the decay rates for the charged decays �+ ! p +  and �� ! �� can be accounted
for consistently. We showed that, in leading order, ChPT predicts the ratios of the decay
amplitudes of all the neutral channels as functions of the baryon masses only. We compared
these predictions with the data. Furthermore, the asymmetry parameters still vanish in this
leading-order calculation. However, this is not necessarily inconsistent with the data in the
expansion scheme of ChPT.

In particular, the diagrams contributing to the leading-order amplitude are the tree
diagrams given in Fig. 2. There are two kinds of diagrams: the direct-emission diagrams,
Fig. 2a, and the baryon-pole diagrams, Fig. 2b and Fig. 2c. Loop diagrams give rise to
contributions of higher order. The pole diagrams contribute only to the parity-conserving
form factor C, in accordance with the Lee-Swift theorem [29]. Unfortunately as concluded in
Ref. [8], within the context of the simplest heavy-baryon chiral-perturbation theory without
inclusion of any additional resonances, the understanding of many of the experimental results
in radiative hyperon decays, including the asymmetry, is still beyond reach. However, if one
is willing to introduce additional resonances, together with the additional parameters that
come with them, it is possible to �t the data with these additional parameters [9].
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Figure 2. Diagrams for B ! B0. Here circles and squares represent strong and weak vertices

respectively.

5 Magnetic Moments

The magnetic moments of the octet baryons were found to obey approximate SU(3)
symmetry a long time ago by Coleman and Glashow (CG) [30]. In the SU(3)-symmetric
limit, the nine observable moments (including the transitional moment between �0 and
�) can be parameterized in terms of two parameters, and as a result obey approximate
relationships. The two-parameter result of CG can in fact �t the observed magnetic moments
up to about the 20% level. However, since at present the moments have been measured with
an accuracy better than 1% [10], an improved theoretical understanding is clearly desirable.

Many attempts were made trying to improve the numerical predictions of CG by in-
cluding SU(3)-breaking e�ects using ChPT [31, 32, 33, 34]. However, many of these e�orts
resulted in numerical �ts worse than the leading-order SU(3)-invariant one by CG. For exam-
ple, Caldi and Pagels [31] found that the leading SU(3)-breaking corrections, in their scheme
for ChPT, appear in the nonanalytic forms of

p
ms andms lnms. They showed that the

p
ms

corrections are in fact at least as large as the SU(3)-invariant zeroth-order terms, which casts
doubt on the applicability of ChPT. Caldi and Pagels suggested that this \failure" of ChPT
might be attributed to the large mass of the kaon in the loops and the fact that the leading
correction is of nonanalytic form. Such nonanalytic contributions were indeed pointed out
earlier by Li and Pagels [37] and others [38]. However, the nonanalyticity appears only in the
SU(3)-invariant chiral-symmetry-breaking mass, not in SU(3)-breaking parameters. More
recently, similar large corrections to the baryon magnetic moments nonanalytic in ms have
been found by calculating them up to the one-loop level in ChPT [32, 26, 34]. By using
only the

p
ms terms Jenkins et al. [26] could improve the accuracy of the Coleman-Glashow

results from 20% to about 10%. However, this could only be achieved by using a di�erent

value of the meson decay constant in kaon loops than in pion loops, with the e�ect that the
magnitude of the kaon loops is arti�cially reduced. In addition, Krause [32] showed that
ms lnms corrections are just as important, which disagrees with Refs. [26, 34]. Also, Krause
further argued that the nonanalytic contributions are not at all a good approximation of the
loop integrals.
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5.1 Okubo relation

Shortly after CG, Okubo [39] derived a relation

6�� + ��� � 4
p
3���0 � 4�n + ��+ � 4��0 = 0;

where ���0 is the �
0 ! � transition moment. This relation can be obtained if one assumes

that SU(3)-breaking corrections to the moments are linear in the quark mass matrix �,
de�ned by � � diag(0; 0; ms). The SU(3)-breaking terms introduce an additional 5 param-
eters. The resulting 7-parameter prediction can �t the current 9 high-precision observables
to within 1.5% [35].

Within the context of ChPT, there is no unique way of treating the SU(3) breaking yet.
However, the nice �t of the Okubo relation can be taken as a hint. In Ref. [36], it was shown
that, even within the scheme of ChPT used in Ref. [33], while the one-loop nonanalytic
contributions of the form

p
ms satisfy the Okubo relation, the nonanalytic contributions of

the form ms lnms do not! In Ref. [35], a formulation of ChPT was suggested such that the
leading SU(3)-breaking correction is indeed linear in ms.

6 Summary

We have shown that there are still many issues that we do not understand associated
with hyperon decays based only on fundamental principles. It is possible that some of the
diÆculties are such that, due to our inability to deal with the strong interaction, we cannot
understand them without invoking some phenomenological models. It is also possible that
some of the current data that make it so hard for us to understand may be changed by
improved measurements in the future.

This work was supported in part by the National Science Council of R.O.C., and by the
U.S. Department of Energy. We wish to thank the SLAC Theory Group for their hospitality.
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