Workshopon InstrumentationforMuon CoolingStudies

IllinoisInstituteofTechnology,November10-11,2000

Prospectsfora HighIntensityMuon Facility

atRAL

KennethLong

ImperialCollegeLondon

...ahighintensitymuonbeamforR&D intothe vFct frontend

• Beaminstrumentation

→ Veryhighfluxbeam

→ Verylowmassdetectors

• µ-beamsfor vFct R&DatRAL

→ PhaseI:CoolingDemonstration intheHEPTest-Beam(an

upgradeof MuScat?)

→ PhaseII:Ahighintensity bunchedmuonbeamatRAL

Instrumentationandthecoolingchannel

- Ionisation coolingoftransverse emittance:
- Ionisation coolingreliesonenergylossto reducebeammomentum
- MultipleCoulombscatteringresultsin largerangulardivergenceasbeamleaves absorber
- RFcavityrestoreslongitudinalmomentum

Coolingchannelconsistsofrepetitionof absorberandRFcavityinconfining solenoidal field

Idealabsorberforcoolingchannelhas

- Large X_0 and large dE/dx
- 'Ratio' *dE/dx* to X₀mustallowcoolingto 'beat'heating

Liquidhydrogenproposedas X_0 vs dE/dx has beenshown, insimulations, to cool

Instrumentationandthecoolingchannel

http://www.fnal.gov/projects/muon_collider/nu-factory/subsys/ss-cooling/nuss-cooling.html

-Briefoutlineofthechallenge:

 InFNALdesignabsorberis~13cmliquid hydrogencontainedby300 µm aluminium windows

 \Rightarrow L-H₂ \rightarrow 1.5% X₀, windows 0.9% X₀

- Instrumentationmustexploitexisting materialorbe verylowmass.Mustoperate inpresenceofintense(dirty)muonbeam andintenseX-raybackgroundfromRF cavities.
- <u>Cherenkovlightfromfoils:</u> Imageof intensebeam,excellenttiming.Canitbe done?
- <u>Transitionradiationfromthinfoil:</u> Image ofintensebeamandgoodtiming.Canlight becollected?
- <u>Developmentoffeedback:</u> e.g.mustensure thattheRFcavitiesregenerateexactlythe momentumlostintheabsorbers .

The vFct WorldNeedsa HighIntensityMuonBeam!

Twoclassesofissue:

Basicphysics:

 ImportantdetailsofmultipleCoulomb scattering, *dE/dx*oflowenergy muons in matterandstragglingneedtobemeasured (MuScat+upgrade)

Coolingdemonstration:

• Evenwhenthe'basicphysics'measurements havebeenmadeand encorporated into simulationsofthecoolingchannelitwillbe necessarytodemonstratethateachpieceof thecoolingchannelanditsdiagnosticsand feedbacksystemsworkbothindividuallyand asa *SYSTEM*!

Needtodevelopa'phased'muonR&Dfacility

- PhaseI: Addressbasicphysicsissues
- **PhaseII:** Developelementsofand instrumentationforcoolingdemonstration

Muon beamsfor vFctR&Dat RAL

PhaseI: BasicPhysicsof Ionisation Cooling

Transverse emittance cooling:

$$\frac{1}{\varepsilon_{\perp,N}} \frac{d\varepsilon_{\perp,N}}{dz} = \frac{1}{\beta^2} \frac{1}{E} \left| \frac{dE}{dz} + \eta \frac{\langle x^2 \rangle}{\varepsilon_{\perp,N}^2} \frac{1}{X_0} \right|$$

Fightbetween *dE/dx* and multiplescattering

Longitudinal emittance growth Straggling \Rightarrow MuonsfalloutofRFbucket

• <u>MuScat:</u> Determineshapeoftailsof multipleCoulombscattering

 \rightarrow Precised etermination of heating term

• <u>Required:</u>

 \rightarrow Demonstrationof principle of cooling

→ Measurementeffectofstraggling

→ Upgradeof MuScat

PhaseI:BasicPhysicsofIonisationCooling

ЧO 8 8 ~100 MeV/c) 1 Σ 11-be 飅 SCRAP SECTION AN ŧ ONLERS STORY 800 MeV/c

- MuonsinHEPTestbeam:

PhaseI:BasicPhysicsofIonisationCooling

Possiblelayoutforexperimenttodemonstrate principleofcooling and measurestraggling

10m

Scintillating fibretracker:

σ_x~0.2mm

 $\sigma_t \sim 150$ ps

-Positionandmomentummeasurement:

Requiretoreconstruct

$$m_{\mu}^{2}c^{2}\varepsilon_{\perp,N}^{2} = \langle x^{2} \rangle \langle p_{x}^{2} \rangle - \langle xp_{x} \rangle^{2}$$

beforeandaftertheabsorber

• Positionandtimingfromscintillating fibre trackingdetectors

$$rac{\sigma_{arepsilon_{\perp,\mathrm{N}}}}{arepsilon_{\perp,\mathrm{N}}}\!<\!1\%$$

Demonstrationofprincipleofcoolinglooks feasiblewithsuchaset-up

Muon beamsfor vFctR&Dat ISIS

PhaseII: AHighIntensityMuonBeam

0.4154 m upstream of its nominal position.

13/17

Pions atISIS

- 800 MeV ProtonsfromISIS
- 2.5 ×10 ¹³protonsperpulseat1Hz(i.e. onebunchin50)
- 2cm Ø×5cmlongGraphiteTarget

- ~25 π^+ /1000protons \Rightarrow 6 ×10 ¹¹ π^+ perpulse
- Capture~20% \Rightarrow 1 ×10 ¹¹ π +perpulse

• ~12% inside $\pm 25\%$ momentum by te $\Rightarrow 10^{10} \pi^+$ perpulse

P. Drumm

MuonsatISIS

-firstideas:

 Decay/muoncapturechannelnotyetstudied butperhapspossibletokeepbetween10% and50%ofthe muons:

 \Rightarrow ~10 ⁹ muons in100 ns bunch

- TightbunchingpossiblebyloweringRFfield earlyinaccelerationcycle. Techniquetobe simulatedintrackingcalculationsandtested inmachinedevelopmentperiodsoon.
 - \Rightarrow Keep~1%of muons ifmakea10 ns bunch

 \Rightarrow ~10 ⁷ muons in10 ns bunch

• Designstudy: Ofprotonbeamline,target, decaychannelaswellasmini-bunching schemenowstarting

Possibleroutetohighintensitymuonbeam

Summary

"ProspectsforaHighIntensityMuonFacilityin theUK"

Good!

PhaseI: BasicPhysics

- MuScat hasmadeexcellentstartin measurementof'basicphysics'parameters ofthe ionisation coolingchannel
- Needtodevelop MuScat tolookat *dE/dx*, stragglinganddemonstrationofthe principleofcooling(perhapsinHEPTest BeamatRAL)

PhaseII: HighIntensityMuonFacility

- ISISofferspossibilitytodevelopanintense bunchedmuonbeam
- Needtodevelopideasforprovisionofbeam inparalleltoideasfor targetry,captureand instrumention
- Possibilitytobuildtowardsanengineering demonstrationof ionisation cooling