BEAM-HALO EXPERIMENT AT THE LOS ALAMOS LEDA FACILITY

Muon Cooling Instrumentation Workshop
J. Douglas Gilpatrick
LANSCE-1 Beam Diagnostics Team
Los Alamos National Laboratory
November 10 & 11, 2000

Outline

- Summarize halo formation physics and types of halos
- Discuss experimental layout
- Beam parameters
- Describe primary instrumentation
 - Wire scanner/halo scraper for projected transverse beam distributions
- Summary and status

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

Our Present Picture of Halo Formation in a Beam Transport Line or Linac

- Beam mismatch is a condition that with space charge can lead to significant halo growth.
- Beam mismatch excites coherent modes of the beam. The most important modes involve oscillations of the rms beam envelopes.
- In beam transport channels there are two modes, breathing mode (x and y in phase) and quadrupole mode (x and y out of phase).
- Both coherent modes can resonate with the halo particles increasing their amplitudes. For a general mismatch both modes are present.
- This mechanism is an effective way to produce an undesirable extended halo.
- These halo modes can result in beam loss and activated structures.
- Halo experiment looks to compare beam data with the simulated haloformation physics.

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

3

Fully Instrumented LEDA Beam-Halo Lattice 11 meters RFQ 52 quadrupole FODO lattice HEBT 52 Quadrupoles First 4 9 Wire Scanners/Halo Scrapers (Projected Distributions) quadrupoles 3 Toroid (Pulsed Current) independently 5 PMT Loss Monitors (Loss) powered 10 Steering Magnets for generating 10 Beam Position Monitors (Position) mismatch modes. 2 Resistive Wall Current Monitors (Central Energy) Nov. 10 & 11, 2000 LANSCE-1 Beam Diagnostics

LEDA Facility Halo Lattice

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

.

LEDA Beam Parameters

- Proton beam energy exiting the RFQ: 6.7 MeV
- · LEDA injector and RFQ nominally produces CW beams
 - Halo experiment duty factor very low
 - Expected pulse lengths: 0.02- to 0.1-ms
 - · Expected repetition rates: 1- to 3-Hz
- Peak beam currents: 100 mA
- Expected matched-beam rms widths in the halo lattice: 1-mm

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

Breatning mode mismatch m=1.0

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

x profile at center of drift after quad 49

Halo Measurement Experiment has Integrated Wire Scanner and Halo Scraper Profile Measurement Capable of Detecting 5 rms Widths

- · Horizontal and vertical distributions measured
- Wire scanner: 33-µm C fiber measures distribution core
 - Secondary electronics (S. E.) detected
 - Protons not stopped in fiber (range in C: 0.3 mm)
 - Fiber biased to optimize S. E. emission
- Scraper: Graphite brazed on Cu scraper measures distribution tails
 - Range out protons in 1.5-mm thick of graphite
- Measured wire placement error: < 0.02 mm
- · Electronics integrate S. E. or proton current
 - Measured equivalent noise in lab: 0.04 fC
- · Simulated distribution measurement shows
 - Combined dynamic range of 106: 1 possible
 - · Wire scanner can detect to 4 rms widths
 - · Halo scraper acquires another rms width
 - Errors: wire placement, electronics noise, beam current and position variations

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

11

Halo WS/HS Assembly

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

Summary and Status

- Halo formation physics and simulations are fairly mature.
- Halo experiments will compare beam data with the simulation physics.
- Experiment layout uses a 52 quadrupole FODO lattice to create the matched and mismatched beam conditions for the 2 mismatch modes.
- Fully diagnosed lattice uses WS/HS assemblies to acquire 9 horizontal and vertical projected distributions with > 10⁴ dynamic range (10⁶ possible).
- Lattice beamline fully assembled and ready for beam.
 - WS/HS #4 and HEBT WS installed
- Early stages of commissioning the halo lattice beamline.

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

LEDA Wire-Scanner-Fiber Secondary and Thermionic Emission

- Measured secondary emission coefficient: 3.3%
- Thermionic emission limitation (see graph)
 - Distorts profile core distribution shape
 - Two SiC fiber robustness tests performed
- · Positioned fiber in beam core, varied pulse length
 - Acquired optical spectrometer data, 450- to 750-nm
 - Initial conclusion: fibers more robust than expected
 - 1st test: fiber severed at 25 ms
 - Some indication outer jacket dislodged at 4 ms
 - 2nd test: fiber severed at 2 ms
 - Optical data and thermionic-electron-data correlated
 - Optical data and simulation w/o thermionic emission bracket fiber temperature of 1575K to 2050K
- Considered ionizing radiation detection methods: 6.7-MeV protons on SiC or C barely produces sufficient γ radiation over background

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

15

Wire Scanner Fiber Clamping Technique Improves the Reliability of the Electrical Connection and Mechanical Fiber Support

- Mechanically support the wire and keep it under tension during motion and thermal loading.
 - Two techniques used at LANSCE and LEDA
 - SiC/C fiber: drawn-Cu tube crimped clamp (see picture)
 - C fiber: plated, no spring, soldered pad
- · Why develop new design?
 - Older design difficult to attach.
 - Time consuming process to assemble connections.
 - Requires the exact length of wire.
 - We need to be able to hold a smaller diameter fiber.
- New collet based clamp advantages
 - Easier/quicker to attach wire.
 - Allows use of a smaller-diameter wire.
 - Doesn't require the exact length of wire.
 - Spring is not in the signal circuit

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

Beam Current Measurements

- Single high-permeability toroidal-core from Bergoz provides pulsed current measurements
 - Multi-turn secondary winding measures peak macro-pulse beam current
 - Electronics preamplifier reduces L/R time constant of secondary winding
 - Extra in-situ 10-T winding provides a calibration current pulse
 - Iron magnet shield isolates core from external magnetic fields.
- Typical error < 0.5 mA
- · Bandwidth: <10 Hz to > 200 kHz

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

17

Beam Loss Measurements

- 5 located in FODO lattice and 2 located in HERT
- 2 Types: differential current and ionizing radiation
- · Differential current
 - 2 sequential pulsed current toroids
 - DSP applies calibration and differential summation on each 2-ms sample
 - Fast protection input
- The PMT/ Csl loss monitors also provide fast protection inputs.
- · PMT w/ CsI resolution: 1 nA
 - Based on previous measurement 10⁵ better resolution w/ 6.7-MeV protons on SiC
 - Bandwidth: 170 kHz
 - Sufficiently fast to see 1 μs variations

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

Beam Position: Traditional Micro-stripline Design

- · Steering plan: several possibilities
 - Primary plan uses position information from 2 BPMs (72 deg phase advance between pairs) for every 10 magnets
- · In the 52-magnet lattice
 - 14-mm radius, 45 deg subtended angle, 50-mm long
 - Qty: 5 pairs or 10 total
 - Wire measurement: 2.17 dB/mm
- In the H EBT (Qty: 3)
 - 25-mm radius, 45 deg subtended angle, 50-mm long
 - · Wire measurement: 1.39 dB/mm
- In front of the beam stop (Qty: 2)
 - 75 mm radius, 45 deg subtended angle, 50-mm long
 - · Wire measurement: 0.44 dB/mm

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics

19

BPM Processor Operation

- Log ratio processor uses DSP for real time correction of
 - AD 8307 log amp logarithmic nonconformity (shown below)
 - Losses in cables and BPM
- Dynamic range: Should be > 60 dB within ±0.1 dB, (former version, left)
 - Approximately 1000:1 in current
- Resolution: <50 μm
 - 2.17 dB/mm BPM (2.8-cm aperture)
- Repeatability: <100 μm
- · Bandwidth: 200 kHz

Nov. 10 & 11, 2000

LANSCE-1 Beam Diagnostics