

IIT Seminar, April 6, 2005

Plans for the Reactor Neutrino Experiment Double Chooz Double Chooz US

IIT Seminar, April 6, 2005

And then Braidwood

France

November 11 2004 Double-CHOOZ

Illinois

Outline

\bigcirc Remarks about Θ_{13}

OCHOOZ

Reactor v Initiatives

 \triangleright K2DET \triangleright Diablo Canyon \triangleright Kaska \triangleright Daya Bay \triangleright Angra

- Double Chooz
- Braidwood
- Prospects/NuSAG

November 11 2004 Double-CHOOZ

Remarks about Θ_{13}

November 11 2004 Double-CHOOZ

MNS matrix

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \\ \mathbf{v}_\tau \end{pmatrix} = \mathbf{U} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$

-U: 3 angles, 1 CP-phase + (2 Majorana phases)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \mathbf{c_{23}} & \mathbf{s_{23}} \\ 0 & -\mathbf{s_{23}} & \mathbf{c_{23}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{13}} & 0 & \mathbf{s_{13}}e^{i\delta} \\ 0 & 1 & 0 \\ -\mathbf{s_{13}}e^{-i\delta} & 0 & \mathbf{c_{13}} \end{pmatrix} \begin{pmatrix} \mathbf{c_{21}} & \mathbf{s_{12}} & 0 \\ -\mathbf{s_{12}} & \mathbf{c_{12}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Two schemes:

November 11 Double-CHO(

3 Angles

the second seco

- Operation of the second state of the second
- Output Boundary CHOOZ reactor neutrino experiment

November 11 2004 Double-CHOOZ

Apology

■ Apology to non-experts

- ℕ Θ₁₃ limits are expressed several different ways
- Several factors of 2 confusion are possible

 $\underline{\mathsf{U}_{e3}}^2 = \underline{\mathsf{sin}}^2 \underline{\theta_{13}} \sim \frac{1}{2} \underline{\mathsf{sin}}^2 \underline{\theta_{\mu e}} \sim \frac{1}{4} \underline{\mathsf{sin}}^2 \underline{2\theta_{13}}$

November 11 2004 Double-CHOOZ

	10.07866
Maury Goodman	11.00000
Argonne National La	11.53696
	13.28253

θ_{13}	θ_{13}	$\sin(\theta_{13})$	$\sin^2(\theta_{13})$	$\sin^2(2\theta_{13})$
(degrees)	(radians)	a restance of	255	
0.00000	0.00000	0.00000	0.00000	0.00000
1.00000	0.01745	0.01745	0.00030	0.00122
1.43254	0.02500	0.02500	0.00063	0.00250
1.81215	0.03163	0.03162	0.00100	0.00400
2.00000	0.03491	0.03490	0.00122	0.00487
2.02740	0.03538	0.03538	0.00125	0.00500
2.86598	0.05002	0.05000	0.00250	0.00998
3.00000	0.05236	0.05234	0.00274	0.01093
4.00000	0.06981	0.06976	0.00487	0.01937
4.05481	0.07077	0.07071	0.00500	0.01990
4.06505	0.07095	0.07089	0.00503	0.02000
4.30122	0.07507	0.07500	0.00563	0.02237
5.00000	0.08727	0.08716	0.00760	0.03015
5.73917	0.10017	0.10000	0.01000	0.03960
6.00000	0.10472	0.10453	0.01093	0.04323
6.46048	0.11276	0.11252	0.01266	0.05000
7.00000	0.12217	0.12187	0.01485	0.05853
7.03493	0.12278	0.12247	0.01500	0.05910
7.18076	0.12533	0.12500	0.01563	0.06152
7.60180	0.13268	0.13229	0.01750	0.06878
8.00000	0.13963	0.13917	0.01937	0.07598
8.13010	0.14190	0.14142	0.02000	0.07840
8.62693	0.15057	0.15000	0.02250	0.08798
9.00000	0.15708	0.15643	0.02447	0.09549
9.21747	0.16088	0.16018	0.02566	0.10000
9.97422	0.17408	0.17321	0.03000	0.11640
10.00000	0.17453	0.17365	0.03015	0.11698
10.07866	0.17591	0.17500	0.03063	0.11875
11.00000	0.19199	0.19081	0.03641	0.14033
11.53696	0.20136	0.20000	0.04000	0.15360
13.28253	0.23182	0.22975	0.05279	0.20000

Apology

Apology to non-expertsApology to experts

- $\mathbb{D} \Theta_{13}$ limits are expressed several different ways
- Several factors of 2 confusion are possible

 $\underline{\mathsf{U}_{e3}}^2 = \underline{\mathsf{sin}}^2 \underline{\theta}_{13} \sim \frac{1}{2} \underline{\mathsf{sin}}^2 \underline{\theta}_{\mu e} \sim \frac{1}{4} \underline{\mathsf{sin}}^2 \underline{2\theta}_{13}$

November 11 2004 Double-CHOOZ

	10.07866
Maury Goodman	11.00000
Argonne National La	11.53696
	13.28253

θ_{13}	θ_{13}	$\sin(\theta_{13})$	$\sin^2(\theta_{13})$	$\sin^2(2\theta_{13})$
(degrees)	(radians)	1175LADIA	225	and a second
0.00000	0.00000	0.00000	0.00000	0.00000
1.00000	0.01745	0.01745	0.00030	0.00122
1.43254	0.02500	0.02500	0.00063	0.00250
1.81215	0.03163	0.03162	0.00100	0.00400
2.00000	0.03491	0.03490	0.00122	0.00487
2.02740	0.03538	0.03538	0.00125	0.00500
2.86598	0.05002	0.05000	0.00250	0.00998
3.00000	0.05236	0.05234	0.00274	0.01093
4.00000	0.06981	0.06976	0.00487	0.01937
4.05481	0.07077	0.07071	0.00500	0.01990
4.06505	0.07095	0.07089	0.00503	0.02000
4.30122	0.07507	0.07500	0.00563	0.02237
5.00000	0.08727	0.08716	0.00760	0.03015
5.73917	0.10017	0.10000	0.01000	0.03960
6.00000	0.10472	0.10453	0.01093	0.04323
6.46048	0.11276	0.11252	0.01266	0.05000
7.00000	0.12217	0.12187	0.01485	0.05853
7.03493	0.12278	0.12247	0.01500	0.05910
7.18076	0.12533	0.12500	0.01563	0.06152
7.60180	0.13268	0.13229	0.01750	0.06878
8.00000	0.13963	0.13917	0.01937	0.07598
8.13010	0.14190	0.14142	0.02000	0.07840
8.62693	0.15057	0.15000	0.02250	0.08798
9.00000	0.15708	0.15643	0.02447	0.09549
9.21747	0.16088	0.16018	0.02566	0.10000
9.97422	0.17408	0.17321	0.03000	0.11640
10.00000	0.17453	0.17365	0.03015	0.11698
10.07866	0.17591	0.17500	0.03063	0.11875
11.00000	0.19199	0.19081	0.03641	0.14033
11.53696	0.20136	0.20000	0.04000	0.15360

0.22975

0.05279

0.20000

0.23182

CP violation $(v_u \rightarrow v_e)$ [Long-Baseline Accelerator]

• $P(v_{\mu} \rightarrow v_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$ {in vacuum}

 $- P_1 = \sin^2(\theta_{23}) \sin^2(2\theta_{13}) \sin^2(1.27 \Delta m_{31}^2 L/E)$

 $- P_2 = \cos^2(\theta_{23}) \sin^2(2\theta_{12}) \sin^2(1.27 \Delta m_{21}^2 L/E)$ often negligible

-
$$P_3 = -/+ J \sin(\delta) \sin(1.27 \Delta m_{31}^2 L/E)$$

$$- P_4 = J \cos(\delta) \cos(1.27 \Delta m_{31}^2 L/E)$$

where $J = cos(\theta_{13}) sin(2\theta_{12}) sin(2\theta_{13}) sin(2\theta_{23}) x$

 $\sin(1.27 \ \Delta m_{31}^2 \ L/E) \sin(1.27 \ \Delta m_{21}^2 \ L/E)$

Ρ

November 11 2004 Double-CHOOZ

Correlations & degeneracies

• One perfect measurement of $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$

→8 possible values of $sin^2(2\underline{\theta}_{13})$

November 11 2004 Double-CHOOZ

Reactor/Accelerator approaches to θ_{13}

Reactor Features

- 🖼 Best current limit
- Needs careful control of systematics
- 🖼 Subtract two numbers
- Not sensitive to CP, matter
- Required detector sizes ~ 50 tons

Accelerator Features

- Some long-baseline beams already (almost) exist
- Signal/Background improves off-axis
- Sensitive to CP, matter
 →ambiguities/degeneracies
- Required detector sizes ~ 50 kilotons

If there was strong theoretical prejudice for $\theta_{13} = 0$, accelerator CP/matter sensitivity would be less relevant.

November 11 2004 Double-CHOOZ

- I started working on Fermilab-Soudan longbaseline in 1988. We had our first Fermilabinduced v at Soudan 3 weeks ago. Since 1988,
 - © CHOOZ was proposed, ran and finished
 - San Onofre → Palo Verde was proposed, ran, finished
 - SamLAND was proposed, ran, & due to its incredible success, had its impact
- It occurs to me that neutrino physics at a reactor has some advantages w.r.t. physics impact.

November 11 2004 Double-CHOOZ

Neutrino Oscillation Workshop 2004

CHOOZ

November 11 2004 Double-CHOOZ

CHOOZ Cf source

Fig. 13. Mechanical drawing of the detector; the visible holes on the geode are for the PMT housing (from [42]).

Fig. 32. Distributions of neutron events with the 282 Cf source at z = -120 cm. The discontinuity in the z distribution at the vessel surface is visible also in Monte Carlo generated events.

November 11 2004 Double-CHOOZ

 \overline{v}_{e} Signal

 $\nabla_e p \rightarrow e^+ n$

Neutron/positron coincidence

Fig. 37. Neutron versus positron energy for neutrino-like events selected from the preliminary sample by applying the "topological" cuts here indicated.

Fig. 46. Experimental positron spectra for reactor-on and reactor-periods after application of all selection criteria. The errors shown are statistical.

November 11 2004 Double-CHOOZ

- Less antineutrinos than expected.
- A shape of the energy spectrum indicative of oscillations. (This requires more statistics)

November 11 2004 Double-CHOOZ

Systematics Limited by Reactor Flux

CHOOZ Limits

 Δm^2 Palo Verde > Sin²2 θ_{13} < 0.19 (at 2.0 10⁻² eV²) > SK and atmospheric SK $sin^{2}2\theta_{13}$ (90% CL) give allowed Δm^2 > Result limited by systematics TH. Chooz

 $sin^2 2\theta_{13}$

November 11 2004 Double-CHOOZ

KamLAND

November 11 2004 Double-CHOOZ

 Θ_{13} from reactors?

solar

 $P(v_e \rightarrow v_e) = 1$ - cos⁴ \theta₁₃ sin² 2<u>\theta_{12}} sin² (\triangle m^2_{21} L/4E)</u> - sin² 2\theta_{13} sin2 (\triangle m^2_{31} L/4E)

No CP terms

November 11 2004 Double-CHOOZ

Θ_{13} Initiatives

November 11 2004 Double-CHOOZ

November 11 2004 Double-CHOOZ

Jan 2004 White Paper

- Instigated by LBL & ANL
- 4 Workshops
 - → Alabama 2003
 - → Munich 2003
 - →Niigata 2004
 - → Angra 2005
- 7 Site-specific appendices
- 125 authors from 40 institutions in 9 countries

November 11 2004 Double-CHOOZ

Lindner Group paper

Rate & shape tests

- To maximize the statistical power of the "rate" test, want the oscillation max at the peak.
- To maximize the statistical power of the "shape" test, want an oscillation minimum at the peak.
- The "shape" test requires more statistics.

November 11 2004 Double-CHOOZ

- Each experiment will do both
- Optimization of distances depends on ∆m² & GW-t-yr

Optimum Location with a close near detector

∆m²	rate	shape
3 10 ⁻³ eV ²	1300m	850
2 10 ⁻³ eV ²	1700	1050

Conclusion of White Paper

- A new experiment can do better than CHOOZ by using two (or more) detectors
- There was not consensus on the how far in precision reactor experiments could be made to address – i.e. the eventual limiting systematic error was not agreed upon(0.03-0.003).
- There is clearly need to address statistical error in another round or two of experiments

November 11 2004 Double-CHOOZ

APS multi-divisional v study

- One of (two) high priority recommendations is for a concerted program to measure θ₁₃ including:
 - ➔ A reactor experiment
 - ➔ An accelerator experiment (with NOvA in mind).
- Report available just today (11/11) at http://www.aps.org/neutrino/

November 11 2004 Double-CHOOZ

After 4 workshops, 6 Reactor possibilities

Currently Proposed sites/experiments

Site	Power	Baseline	Detector	Overburden
(proposal)	(GW)	Near/Far (m)	Near/Far(t)	Near/Far (MWE)
Angra dos Reis (Brazil)	6	300/1500	50/500	200/1700
Braidwood (US)	7	200/1500	130/130	450/450
Double-CHOOZ (France)	7	200/1050	10/10	60/300
Daya Bay (China)	11	300/1500	45/45	200/1000
Diablo Canyon (US)	6.4	400/1800	25/50	100/700
Kashiwazaki (Japan)	24.3	300/1300	8.5/8.5	120/350
Krasnoyarsk (Russia) Double-CHOOZ	3.2	115/1000 Maury Goodman Argonne National La	46/46 b	600/600

Currently Proposed sites/experiments

Site	Power	Baseline	Detector	Overburden
(proposal)	(GW)	Near/Far (m)	Near/Far(t)	Near/Far (MWE)
Angra dos Reis (Brazil)	6	300/1500	50/500	200/1700
Braidwood (US)	7	200/1500	130/130	450/450
Double-CHOOZ (France)	7	200(1050)	10/10	60(300
Daya Bay (China)	11	300/1500	45/45	200/1000
Diablo Canyon (US)	6.4	400/1800	25/50	100/700
Kashiwazaki (Japan)	24.3	300/1300	8.5/8.5	120/350
Krasnoyarsk (Russia) Double-CHOOZ	8.2	115/1000 Maury Goodman Argonne National La	46/46 b	600/600

possibilities

November 11 2004 Double-CHOOZ

KR2DET

PMT type EMI 9350 Diameter - 8 inches Coverage - 20%, PMT Number - 842

Table 1:

 $N(e^{+}, n)$,

 day^{-1}

55

4200

 $N(e^+, n)$,

year-1*

16.5 10

 $12.5 \cdot 10^{6}$

Target,

mass, ton

46

46

** due to internal radioactivity of the detector materials only.

	Krasnoyarsk reactor underg	ground site: 600 mwe
	Det 1	Det 2
reactor	v _e	<mark>⊖</mark> →_
	150 m	1100 m
	Target: 50 m ³ oil+ppo	50 m ³
	Rate: 2500/d	50/d
	S/B: >>1	~10:1

November 11 2004 Double-CHOOZ

Distance,

m

1000

115

Parameter

Far detector

Near detector

* 300 days/year at full power.

Maury Goodman Argonne National Lab

Backgr., day

accid.**

 ~ 0.3

 ~ 0.3

correl.

5

5

Diablo Canyon

[⊥] Geological Evaluation and tunnel cost estimate

November 11 2004 Double-CHOOZ

Figure 52: Schematic view of the detector.

November 11 2004 **Double-CHOOZ**

Daya Bay

November 11 2004 Double-CHOOZ

ANGRA

November 11 2004 Double-CHOOZ

Double-CHOOZ

November 11 2004 Double-CHOOZ

November 11 2004 Double-CHOOZ

November 11 2004 Double-CHOOZ

Far site

- Access through the access tunnel allowed pieces of diameter <u>3.6 m maximum</u>

Crane

• Capacity : 5 tons

• Height under hook : 3.5 m No space for storage

November 11 2004 Double-CHOOZ

Double-CHOOZ (far) Detector

Aim : to take data in 2008 with 2 detectors @ Chooz

Shielding steel and external vessel (studies, réalisation, intégration \rightarrow IN2P3/ PCC)

Target- Gd loaded scintillatopr

Gamma catcher: scintillator with no Gd

BUFFER Mineral Oil with no scintillator

Optically separated inner veto to tag muons

Modular Frame to support photomultipliers Goodman

Threshold can be lowered from CHOOZ without a fiducial volume cut.

November 11 2004 Double-CHOOZ

Acrylic Vessel Design

November 11 2004 Double-CHOOZ

Assembly of the buffer vessel

Soldering between stainless steel sheets would be done on site

Double acrylics vessel throught the far lab. tunnel

Specific facilities have to be developed for this step

PM(s) Buffer

November 11 2004 Double-CHOOZ

Successful !!

November 11 2004 Double-CHOOZ

(mail

Near lab conceptual design

- Identical detector
- Except for additional outer veto
- Possibly larger inner veto

November 11 2004 Double-CHOOZ

Backgrounds

- Near detector overburden is chosen to keep signal/background above 100
- Largest background is fast neutrons
- Largest uncertainty in background comes from spallation of Li9 & He8

Overburden	$\mu \mathrm{ rate}$	$\langle E_{\mu} \rangle$	Neutrons	μ stopping rate	Neutrons
		25	through going μ		stopping μ
(m.w.e.)	(s^{-1})	(GeV)	(s^{-1})	(s^{-1})	(s^{-1})
40	$1.1 \cdot 10^3$	14	2	$5 \cdot 10^{-1}$	0.7
60	$5.7\cdot 10^2$	19	1.4	$3 \cdot 10^{-1}$	0.4
80	$3.5\cdot 10^2$	23	1	$1.2 \cdot 10^{-1}$	0.2
100	$2.4\cdot 10^2$	26	0.7	$6 \cdot 10^{-2}$	0.08
300	$2.4\cdot 10^1$	63	0.15	$2.5 \cdot 10^{-3}$	0.003

Table 4: Estimated neutron rate in the active detector region due to through going cosmic muons.

November 11 2004 Double-CHOOZ

Near site

November 11 2004 Double-CHOOZ

Veto simulation examples

 \checkmark

November 11 2004 Double-CHOOZ

Outer Veto Total Coverage?

Surface Area 408 m²

Coverage of larger
volume to reduce neutron
backgrounds
Cover 99% 800 cm
of direct muons through
the target region.

↑ Use at least 2 layers
 →High efficiency
 →Redundancy
 ↑ Tracking/Pointing

November 11 2004 Double-CHOOZ

Proportional Chambers

Cylindrical Modules 21 Tubes per Layer 84 Tubes per Module 30 Modules for 10.18m Dia. Cy

November 11 2004 Double-CHOOZ

November 11 2004 Double-CHOOZ

Phototubes

Side

Top and Bottom

November 11 2004 Double-CHOOZ

8 inch PMTs

- 512 near + 512 far + 16 spare = 1040 tubes
- 12.9% coverage
- Assures 200 MeV/pe
- Hamamatsu background calculations:

Per PMT

40 - K	2.5 Bq
U	2.5 Bq
Th	1.0 Bq

6.0 Bq/PMT

November 11 2004 Double-CHOOZ

Calibration Deployment

Source Tubes

• Levers & pulleys

November 11 2004 Double-CHOOZ

Calibration Sources

Technique	Calibrations
Optical Fibers, Diffusive Laser ball	Timing and Charge Slopes and Pedestals, attenuation length of detector components
Neutron Sources: Am-Be, ³²² Cf	Neutron response, relative and absolute efficiency, capture time
Positron Sources: ²² Na, ⁶⁸ Ge	e^+ response, energy scale, trigger thresh.
Gamma Sources:	Energy linearity, stability, resolution, spatial and temporal variations.
¹³⁷ Cs	β^{-} , 0.662 MeV
²² Na	β^+ , 1.275 MeV + annih
⁵⁴ Mn	EC, 0.835 MeV
[∞] Zn	1.35 MeV
^{su} Co	EC, 1.173, 1.33 MeV
≊Ge	EC, β^+ 1.899 MeV + annih
**Y	EC, 0.898, 1.836 MeV
H neutron capture	2.223 MeV
²⁴¹ Am- ⁹ Be	(α, n) 4.44 MeV (¹² C)
Gd neutron capture	Spectrum in 8 MeV window
^{12}C neutron capture	4.97 MeV
228 Th	2.615 MeV
⁴⁰ K	EC. β ⁺ β ⁻ 11% 1.46 MeV

Table 3: Table showing the different techniques that are available to calibrate the Double-CHOOZ experiment.

Novembe Double-CHOOZ

Argonne National Lab

Systematic Errors

	After CHOOZ	Double-CHOOZ Goal
Solid angle	0.2%	0.2%
Volume	0.2%	0.2%
Density	0.1%	0.1%
Ratio H/C	0.1%	0.1%
Neutron efficiency	0.2%	0.1%
Neutron energy	0.2%	0.2%
Spatial effects	neglect	neglect
Time cut	0.1%	0.1%
Dead time(veto)	0.25%	< 0.25%
Acquisition	0.1%	0.1%
Distance cut	0.3%	< 0.2%
Grand total	0.6%	< 0.6%

Table 10: The column "After CHOOZ" lists the systematic errors that can be achieve without improvement of the CHOOZ published systematic uncertainties Reference [17]. In Double-CHOOZ, we estimate the total systematic error on the normalization between the detectors to be less than 0.6%.

> November 11 2004 Double-CHOOZ

Maury Goodman Argonne National Lab

	CHOOZ	Doub	le-CHOOZ
selection cut	rel. error (%)	rel. error (%)	Comment
positron energy [*]	0.8	0	not usëd
positron-geode distance	0.1	0	not used
neutron capture	1.0	0.2	Cf calibration
capture energy containment	0.4	0.2	Energy calibration
neutron-geode distance	0.1	0	not used
neutron delay	0.4	0.1	
positron-neutron distance	0.3	0 - 0.2	0 if not used
neutron multiplicity [*]	0.5	0	not used
combined*	1.5	0.2-0.3	

'äveräge values

Table 8: Summary of the neutrino selection cut uncertainties. CHOOZ values have been taken from[17].

	011007	Dauble (10007
D - 1	CHOOZ	Double-CHOOZ
Reactor power	0.7%	negligible
Energy per fission	0.6%	negligible
$\overline{\nu}_{e}/\text{fission}$	0.2%	negligible
Neutrino cross section	0.1%	nēgligiblē
Number of protons/cm ³	0.8%	0.2%
Neutron time capture	0.4%	negligible
Neutron efficiency	0-85%	0.2%
Neutron energy cut (E, from Gd)	0.4%	0.2%

Table 9: Summary of systematic errors that cancel or are significantly decreased in Double-CHOOZ.

Main improvements over CHOOZ

- Larger Detector and full power for both reactors allows higher Luminosity
- Two detectors cancels many systematic errors
- Gamma catcher/Buffer allows the elimination of the fiducial volume cut

November 11 2004 Double-CHOOZ

Letter of Intent

Letter of Intent for Double-CHOOZ: a search for the mixing angle θ_{13}

APC, Paris - RAS, Moscow - DAPNIA, Saclay - EKU-Tübingen -INFN, Assergi & Milano - INR, Moscow -MPI, Heidelberg -RRC, Kurchatov -TUM-München - University of l'Aquila -Universität Hamburg

Version 5.0

April 28, 2004

F. Ardellier ⁵, I. Barabanov¹⁰, J.C. Barrière ⁶, M. Bauer ⁷, L. Bezroukov¹⁰, C. Buck¹¹, C. Cattadori ^{8,9}, M. Cribier ^{1,3}, F. Dalnoki-Veress ¹¹, N. Danilov², H. de Kerret ^{1,12}, A. Di Vacri ^{8,15}, A. Etenko ¹³, C. Grieb ¹⁴, M. Goeger ¹⁴, Y.S. Krilov², D. Kryn ^{1,12}, C. Hagner 16, W. Hampel ¹¹, F.X. Hartmann ¹¹, P. Huber ¹⁴, J. Jochum ⁷, T. Lachenmaier ¹⁴, Th. Lasserre ^{1–1,1,3}, C. Lendvai ¹⁴, M. Lindner ¹⁴, F. Marie ⁴, G. Mention ^{1,12}, A. Milsztajn ³, J.P. Meyer ³, D. Motta ¹¹, L. Oberauer ¹⁴, M. Obolensky ^{1,12}, L. Pandola ^{8,15}, W. Potzel ¹⁴, S. Schönert ¹¹, U. Schwan ¹¹, T. Schwetz ¹⁴, S. Scholl ⁷, L. Scola ⁶, M. Skorokhvatov ¹³, S. Sukhotin ^{12,13}, A. Letourneau ⁴, D. Vignaud ^{1,12}, F. von Feilitzsch ¹⁴, W. Winter ¹⁴, E. Yanovich¹⁰

¹ APC, 11 place Marcelin Berthelot, 75005 Paris, France

² IPC of RAS, 31, Leninsky prospect, Moscow, Russia

³ DSM/DAPNIA/SPP, CEA/Saclay, 91191 Gif-sur-Yvette, France

⁴ DSM/DAPNIA/SPhN, CEA/Saclay, 91191 Gif-sur-Yvette, France

⁵ DSM/DAPNIA/SEDI, CEA/Saclay, 91191 Gif-sur-Yvette, France

⁶ DSM/DAPNIA/SIS, CEA/Saclay, 91191 Gif-sur-Yvette, France

⁷ Eberhard Karls Universität, Wilhelmstr. D-72074 Tübingen, Germany

⁸ INFN, LGNS, I-67010 Assergi (AQ), Italy

⁹ INFN Milano, Via Celoria 16, 20133 Milano, Italy

¹⁰ INR, 7a, 60th October Anniversary prospect, Moscow 117312, Russia

¹¹ MPI f
ür Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

¹² PCC Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

¹³ RRC Kurchatov Institute, 123182 Moscow, Kurchatov sq. 1, Russia

¹⁴ TU München. James-Franck-Str., D-85748 Garching, Germany

¹⁵ University of L'Aquila, Piazza Vincenzo Rivera 1, 67100 L'Aquila, Italy

¹⁶ Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany

November 11 2004 Double-CHOOZ Maury Goodman Argonne National Lab

Th. Lasserre

CHOOZ-US

Proposal for U.S. participation in Double-CHOOZ: A New θ_{13} Experiment at the Chooz Reactor

S. Berridge^g, W. Bugg^g, J. Busenitz^a, S. Dazeley^e,
G. Drake^b, Y.Efremenko^g, M. Goodman^{b*}, J. Grudzinski^b,
V. Guarino^b, G. Horton-Smith^d, Y. Kamyshkov^g, T. Kutter^e
C. Lane^e, J. LoSecco^f, R. McNeil^e, W. Metcalf^e,
D. Reyna^b, I. Stancu^a, R. Svoboda^{e*}, R. Talaga^b

October 14, 2004

+ Notre Dame and 2 more @ Tenn -- Applications from Livermore & Los Alamos

^a University of Alabama, ^b Argonne National Laboratory, ^c Drevel University,
 ^d Kansas State University, ^c Louisiana State University,
 ^f University of Notre Dame, ^g University of Tennessee
 * US Contacts: phsvob@lsu.edu, maury.goodman@anl.gov

November 11 2004 Double-CHOOZ

Funding

- Approved by Two French Physics Funding Agencies
- US proposal DOE-HEP October 2004
- German University proposal under development
- German Lab will provide Scintillator (MPI)
- Local Government agency has provided a chateau
- State Government will probably provide ~1M€
- An Italian Group is having initial discussions with INFN
- Russian Group will provide calibration sources.

November 11 2004 Double-CHOOZ

Funding - 2

- January 2005 EdF will allow the experiment, but will not fund the near lab. French funding agencies will pay for the near lab in principle.
- CHOOZ-US proposal was received by DOE in October 2004. Sent for review in January 2005
- HEPAP/NSAC subpanel or SAG (Scientific Advisory Group) will review US reactor proposals during 2005, after February HEPAP
- Also, 0vββ & accelerator experiments, but there will be three groups(?)

November 11 2004 Double-CHOOZ

Funding(3)

Full funding is not currently in place.

- Conventional wisdom is that this experiment will happen.
- Conventional wisdom is probably right.

November 11 2004 Double-CHOOZ

US Request

PMTs	\$2.11M
Outer Veto	1.32
Front End Electronics	0.23
High Voltage	0.42
Slow Controls	0.09
Calibration Deployment	0.24
Laser	0.05
Management	0.35
Total	\$4.86M

November 11 2004 Double-CHOOZ

Work in Progress

Double-CHOOZ

Collaboration

- A PMT mounting schemes
- Electronics Design
- △ Gd loaded Scintillator optical stability tests
- △ Software Development
- △ Engineering Evaluation for near site by EdF
- 13 inch tubes versus 8 inch tubes

Milestones

(with current schedule)

- May 04-Jun 05 Project Definition
- 2005 Full Approval (assumption)
- ✤ Jun 05 Call for Bids
- Jun 05-Oct 07 Production
- Mid 06 Start on site installation
- May 07 Far Detector Completion
- Oct 07 Sin²2 θ_{13} > (0.19) with far detector alone
- ✤ Nov 07 Near Detector Completion
- Dec 08 Sin²2 θ_{13} > (0.05) sensitivity 2 detectors
- ♦ Dec 10 $Sin^2 2θ_{13} > (0.03)$

November 11 2004 Double-CHOOZ

Braidwood

November 11 2004 Double-CHOOZ

Braidwood

- → 2 near & 2 far detectors r=3.5m
- ⇒ L ~ 200m & 1500m.
- ➡ Depth: 450 mwe (180 m real depth)
- ➡ R&D Proposal 05, Full ~1 yr
- ⇒ 2 shafts cheaper! than horizontal access
- ➡ Good initial relations with EXELON

Figure 4: Schematik bywai of a two detector reactor meatrics oscillation reporinsta.

November 11 2004 Double-CHOOZ

Braidwood Reactor Collaboration

- > Argonne Nat. Lab.: M. Goodman, V. Guarino, L. Price, D. Reyna
- **Brookhaven Nat. Lab.:** R. Hahn, M. Yeh, A Garnov, Z. Chang, C. Musikas
- ►U. of Chicago: E. Abouzaid, K. Anderson, <u>E. Blucher</u>, M. Hurowitz, A. Kaboth, D. McKeen, J. Pilcher, J. Seger, M. Worcester
- > Columbia: J. Conrad, Z. Djurcic, J. Link, K. McConnel, M. Shaevitz, G. Zeller
- Fermilab: L. Bartoszek, D. Finley, H. Jostlein, C. Laughton, R. Stefanski
- Kansas State: T. Bolton, C. Borjas, J. Foster, G. Horton-Smith, N. Kinzie, J. Kondikas, D. Onoprienko, N. Stanton, D. Thompson
- >U. of Michigan: M. Longo, B. Roe
- MIT: P. Fisher, R. Cowan, L. Osborne, G. Sciolla, S. Sekula, F. Taylor, T. Walker, R. Yamamoto
- >Oxford: G. Barr, S. Biller, N. Jelley, G. Orebi-Gann, S. Peeters, N. Tagg
- > U. of Pittsburgh: D. Dhar, N. Madison, D. Naples, V. Paolone, C. Pankow
- St. Mary's University: P. Nienaber
- Sussex: L. Harris
- >U. of Texas: A. Anthony, M. Huang, J. Jerz, J. Klein, A. Rahman, S. Seibert
- >U. of Washington: J. Formaggio

November 11 2004 Double-CHOOZ

Braidwood Baseline

Design Goals: Flexibility, Redundancy, and Cross Checks

Four identical 65 ton detectors

- Outside Radius = 3.5 m
- Fid. Radius = 2.6 m
- Two zones
 (Inner: Gd Scint, Outer: Pure oil)
 - Good access for calibrations
 - Increased fiducial mass
- Redundant detectors at each site
 - Cross checks and flexibility
- Moveable detectors
 - Allows direct cross calibration at near site
- Flat overburden at 450 mwe depth
 - Equivalent to 580 mwe mountain
 - 5 Hz muon rate in 6.5 m radius
 - Deep near detector allows access Novertoeunic2094additional physicMaury Goodman Double-GHQQZ talk) Argonne National Lab

- Mitigate Correlated Background

with extensive, active veto system

- Fast neutrons from muons
- ⁹Li and ⁸He produced from muon

Braidwood Strategy:

Identify and veto the few shower producing muons which produce

Baseline Cost and

Baseline Schedule Estimates

- Civil Costs: (From Hilton and Assoc. consulting firm)
 - Const.+EDIA \$34M
 - Contingency \$8.5M
- Detector and Veto
 System (From Bartoszek
 Eng. and Argonne)
 - Four Detectors \$17M with Veto systems
 - Contingency \$5M
 - Other with cont.
 \$1M
- Schedule:
 - 2004: R&D proposal
 Noverset for the second s

Maury Goodman Argonne National Lab

engineering applied to these cost estimates.

- Likely cost savings in developing an integrated plan for shafts, detectors, and access.
- Results of bore holes and geology studies reduces the needed contingency
- Project also lends itself to operational phasing with near and far shafts and multiple detectors

Engineering/R&D Proposal

- Requests funding to complete the design and engineering of the baseline project.
 - Civil engineering design leading to RFP for a "Design and Build"
 - Detector engineering leading to full "Design Report"
 - Final development of stable Gd loaded scintillator
- Amount requested

Noven**Cevil**¹Engineering</sup> Double-CHOOZ

- Exelon Letter of support:
- Enthusiastic about project
- Claim security and site access issues not a problem
- 1st step was MOU on bore holes

September 21, 2004

To Whom It May Concern:

On behalf of Exelon Generation Company, LLC ("Exelon"), I am writing to express Exelon's support for the plans of the Braidwood Collaboration. Representatives of Exelon have had several meetings with scientists of the Braidwood Collaboration to discuss their proposal to use the Braidwood Nuclear Power Station to make precision measurements of neutrino properties. Exelon is enthusiastic about the opportunity to participate in this timely scientific endeavor.

Exelon

Nuclear

We understand that the proposed experiment will include detectors approximately 200 m (outside the security perimeter) and 1500 m from the reactor cores. The detectors will be placed in caverns at the bottom of approximately 10 m diameter, 180 m deep shafts at these positions. The experiment will also be designed to allow surface transportation (either by rail or crawler) of the detectors between the near and far shafts. The construction of the experiment will last 2-3 years, and data collection could extend for 10 years. The cost of civil construction and all experimental apparatus will be borne by funding agencies supporting the research. We are confident that security and site access issues related to this plan can be addressed in a way acceptable to both Exelon and the experimenters.

As a first step in this program, Exelon and The University of Chicago have concluded a Memorandum of Understanding to drill bore holes to full depth at the near and far shaft positions. These bore holes will provide necessary geological information to proceed with the civil engineering design for the full project.

We look forward to continued collaboration between Exelon and members of the Braidwood Collaboration.

Sincerely,

Charles Pardee Senior Vice President Nuclear Services

\$525 Kaury Go Nuclear Service Argonne National Lab

Engineering/R&D Proposal (Submitted to NSF and DOE)

Exelon

Nuclear

- Requests funding to complete the design and engineering of the baseline project.
 - Civil engineering design leading to RFP for a "Design and Build"
 - Detector engineering leading to full "Design Report"
 - Final development of stable Gd loaded scintillator
- Amount requested
 - Civil Engineering \$525k
 - Detector Engineering\$408k
 - Liquid Scint. \$28k
- Edu. and Outreach \$78k November 11 2004 Maury Go Double-CHOOZ

Exelon Letter of support:

- Enthusiastic about project
- Claim security and site access issues not a problem
- 1st step was MOU on bore holes

September 21, 2004

To Whom It May Concern:

On behalf of Exelon Generation Company, LLC ("Exelon"), I am writing to express Exelon's support for the plans of the Braidwood Collaboration. Representatives of Exelon have had several meetings with scientists of the Braidwood Collaboration to discuss their proposal to use the Braidwood Nuclear Power Station to make precision measurements of neutrino properties. Exelon is enthusiastic about the opportunity to participate in this timely scientific endeavor.

We understand that the proposed experiment will include detectors approximately 200 m (outside the security perimeter) and 1500 m from the reactor cores. The detectors will be placed in caverns at the bottom of approximately 10 m diameter, 180 m deep shafts at these positions. The experiment will also be designed to allow surface transportation (either by rail or crawler) of the detectors between the near and far shafts. The construction of the experiment will last 2-3 years, and data collection could extend for 10 years. The cost of civil construction and all experimental apparatus will be borne by funding agencies supporting the research. We are confident that security and site access issues related to this plan can be addressed in a way acceptable to both Exelon and the experimenters.

As a first step in this program, Exelon and The University of Chicago have concluded a Memorandum of Understanding to drill bore holes to full depth at the near and far shaft positions. These bore holes will provide necessary geological information to proceed with the civil engineering design for the full project.

We look forward to continued collaboration between Exelon and members of the Braidwood Collaboration.

Sincerely,

Charles Pardee Senior Vice President Nuclear Services

Argonne National Lab

Double-CHOOZ

Argonne National Lab

NuSAG Questions & answers?

November 11 2004 Double-CHOOZ

Novemb Double-CHOOZ

Argonne National Lab

that I will describe tomorrow.

Question

Why should the U.S. participate in an experiment that can only achieve 0.03 when the APS study goal was for 0.01 and (much) better experiments are on the horizon?

November 11 2004 Double-CHOOZ

Starting to Answer

Planispherium Neutrinorum is fairly flat, so the horizon is not that close.

November 11 2004 Double-CHOOZ

θ_{13} Predictions

Reference	$\sin \theta_{13}$	$\sin^2 2\theta_{13}$
SO(10)		
Goh, Mohapatra, Ng [40]	0.18	0.13
Orbifold SO(10)		
Asaka, Buchmüller, Covi [41]	0.1	0.04
SO(10) + flavor symmetry	35	1994
Babu, Pati, Wilczek [42]	$5.5 \cdot 10^{-4}$	$1.2 \cdot 10^{-6}$
Blazek, Raby, Tobe [43]	0.05	0.01
Kitano, Mimura [44]	0.22	0.18
Albright, Barr [45]	0.014	$7.8 - 10^{-4}$
Maekawa [46]	0.22	0.18
Ross, Velasco-Sevilla [47]	0.07	0.02
Chen, Mahanthappa [48]	0.15	0.09
Raby [49]	0.1	0.04
SO(10) + texture		
Buchmüller, Wyler [50]	0.1	0.04
Bando, Obara [51]	0.01 0.06	$4 \cdot 10^{-4} 0.01$
Flavor symmetries		
Grimus, Lavoura [52, 53]	0	0
Grimus, Lavoura [52]	0.3	0.3
Babu, Ma, Valle [54]	0.14	0.08
Kuchimanchi, Mohapatra [55]	0.08.0.4	0.03 0.5
Ohlsson, Seidl [56]	$0.07 \dots 0.14$	0.02 0.08
King, Ross [57]	0.2	0.15
Textupes		
Honda, Kaneko, Tanimoto [58]	0.08 0.20	0.03 0.15
Lebed, Martin [59]	0.1	0.04
Bando, Kaneko, Obara, Tanimoto [60]	0.01 0.05	$4 \cdot 10^{-4} 0.01$
Ibarra, Ross [61]	0.2	0.15
3×2 see-saw		
Appelquist, Piai, Shrock [62, 63]	0.05	0.01
Frampton, Glashow, Yanagida [64]	0.1	0.04
Mei, Xing [65] (normal hierarchy)	0.07	0.02
(inverted hierarchy)	> 0.006	$> 1.6 \cdot 10^{-4}$
Anarchy		
de Gouvêa, Murayama [66]	> 0.1	> 0.04
Renormalization group enhancement		
Mohapatra, Parida, Rajasekaran [67]	0.080.1	0.03 0.04

Table 1: Incomplete selection of predictions for θ_{13} . The numbers should considered as order of magnitude statements.

November 11 2004 Double-CHOOZ

- \mathbf{O} θ_{13} is in reach
- A generally accepted observation of non-zero θ₁₃ will take :
 - ×2 experiments *or*
 - 2 techniques (rate & shape)

θ_{13} Predictions, steps

.03 to .01

o An experiment to measure 0.01 is 70 times harder than an experiment to measure 0.03.

o An experiment sensitive to 0.03 is a crucial step on the way to an experiment (which we want) which is sensitive to 0.01.

November 11 2004 Double-CHOOZ

Question

Why should the U.S. participate in an experiment to achieve 0.01 when a much cheaper experiment can reach 0.03?

November 11 2004 Double-CHOOZ

- 0.01 is reasonably achievable for (much) less cost than an accelerator experiment
- If you measure something with Double Chooz, it will be important for long-baseline experiment to measure it more accurately
- If you don't measure something with DC, you'll want to push as far as you reasonably can with a more ambitious experiment
- θ_{13} is important

November 11 2004 Double-CHOOZ

Conclusion

- Double-CHOOZ is one of several ideas for new experiments to measure θ_{13} in nuclear reactors
- In some sense, it is the furthest along.
- If fully approved in 2005
 - Will reach CHOOZ sin²20₁₃(0.19) limit in 4 months from far-detector turnon in 2007
 - $-\sin^2 2\theta_{13} > 0.05$ in 2009
 - $-\sin^2 2\theta_{13} > 0.03$ in 2010-2011
- Braidwood is the right next step

November 11 2004 Double-CHOOZ

Advertisement(s)

 Free monthly neutrino rumor newsletter --~100 lines, send "subscribe" to maury.goodman@anl.gov or see http://www.hep.anl.gov/ndk/longbnews/

Join 1342 subscribers.

Neutrino Oscillation Industry Web Page
 http://www.neutrinooscillation.org/

November 11 2004 Double-CHOOZ