Absorber Review@FNAL 5/17/04

Design of Six-Dimensional Helical Cooling Channel (HCC)

Katsuya Yonehara

Illinois Institute of Technology

Collaborators

R. P. Johnson Muons, Inc.

A. Bogacz, K.B. Beard, Slava Derbenev Jefferson Lab

> **D.M. Kaplan, T.J. Roberts Illinois Institute of Technology**

About this project

- Phase I study done
- Analytical investigation of cooling effect of HCC (MuNote0284)
- Simulate the cooling effect
 - G4BL (v0.8beta)
 - ICOOL (v271)

Helical Dipole Magnet

Example of analytical investigation

- Initial beam parameters;
 - Momentum: 100 MeV/c.
 - Relative momentum spread: \pm 7.5 %
 - Beam width: \pm 3 cm.
- HCC parameters;
 - Length: 56 m
 - Inner diameter: 60 cm
 - Solenoid field strength: 3.5 T
 - Helix dipole strength: 1.01 T @ reference orbit
 - RF frequency: 200 MHz
 - Estimated cooling factor: ~10⁶

viewer-0 (OpenInventorX) fileMenuButton viewMenuButton	- 🗆 🗙	- 5
G4BL 10 m helical cooling channel	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
Solenoid and Helical magnets are invisible in G4BL		
Rotx Roty	Zoom	
Deard@muon2:bear	Wed Apr 21:48	r 21 3

G4BL End view of 200MeV HCC

G4BL HCC Dispersion Measurement: $r_{250} = (1+0.25D) r_{200}, D=2.93$

Simulation results in ICOOL Without Stochastics

Oscillation: mismatching rf phase

Simulation results in ICOOL Without Stochastics

Simulation results in ICOOL Without Stochastics

Simulation results in ICOOL With Stochastics

Simulation results in ICOOL With Stochastics

Simulation results in ICOOL With Stochastics

- Cooling effects in HCC was observed in analytical and numerical investigations.
 - Stochastics disturb the beam profile.
 - Non-paraxial beam with large energy spread makes emittance growth.
 - The RF cavity seems not to work properly.
 - The proper helix field should be found to make better transverse cooling.
 - And/Or increase beam momentum up to 200 MeV/c.
 - The proper RF cavity should be installed to make better longitudinal cooling.
- The large beam acceptance was observed in numerical investigation.
 - Beam width= ± 10 cm, Beam momentum spread= $\pm 10\%$.
- The computer bug has to be fixed.

Go Phase II study!