

Introduction

Daniel M. Kaplan

ICAR

Transforming Lives.Inventing the Future.www.iit.edu

Absorber Review Meeting Fermilab Aug. 12–13, 2002

Outline:

- 1. Collaboration
- 2. Brief review of ionization cooling
- 3. Choice of absorber medium
- 4. Power handling (linear vs. ring coolers)
- 5. Windows & containment
- 6. Summary

Absorber R&D Collaboration

E. Almasri, E. L. Black, K. Cassel, R. Johnson[†], D. M. Kaplan, W. Luebke *Illinois Institute of Technology**

S. Ishimoto, K. Yoshimura KEK High Energy Accelerator Research Organization

M. A. Cummings, A. Dychkant, D. Hedin, D. Kubik Northern Illinois University*

> Y. Kuno Osaka University

D. Errede, M. Haney University of Illinois at Urbana-Champaign*

> M. Reep, D. Summers University of Mississippi

W. Lau University of Oxford

in collaboration with

D. Allspach, C. Darve, S. Geer, C. Johnstone[‡], A. Klebaner, B. Norris, M. Popovic, A. Tollestrup *Fermilab*

* member, Illinois Consortium for Accelerator Research [†]also at Muons, Inc. [‡]also at IIT **(Is this up-to-date?)**

Ionization Cooling

- RF cavities between absorbers replace ΔE
- Net effect: reduction in p_{\perp} spread w.r.t. p_{\parallel} , i.e., transverse cooling
- But energy spread increases due to energy-loss straggling \rightarrow beam losses

Longitudinal Ionization Cooling?

- At or below ionization minimum, dE/dx slope zero or negative ⇒ no negative feedback
- Above ionization minimum, dE/dx slope positive
 - but too small to be useful, and
 - straggling (random fluctuations in ionization rate) significant
- $\Rightarrow \exists$ no good regime for longitudinal ionization cooling

Comparing potential absorber media:

• 2D transverse-cooling rate: $\frac{d\varepsilon_{x,N}}{dz} \approx -\frac{1}{\beta^2} \frac{\varepsilon_{x,N}}{E} \left| \frac{dE}{dz} \right| + \beta_{\perp} \frac{(0.014 \text{ GeV})^2}{2\beta^3 E m_{\mu} L_R}$

Mat'l	ρ	dE/dx	<i>dE/dx</i> /cm	L_R	merit	
	(g/cm ³)	$(MeV/g \cdot cm^2)$	(MeV/cm)	(cm)	$(L_R dE/dx)^2$	
LH ₂	0.0708	4.05	0.29	866	1	
LHe	0.125	1.94	0.24	755	0.51	
LiH	0.82	1.94	1.59	106	0.44	
Li	0.53	1.64	0.88	155	0.28	
CH ₄	0.42	2.42	1.03	46.5	0.19	
Be	1.848	2.95	2.95	65	0.17	

- "merit" \propto 4D transverse-cooling rate -

⇒ In the scattering-limited cooling regime, as equilibrium between cooling and heating is approached, hydrogen is best by factor ≈2

Absorber Power Handling

• Neutrino Factory Feasibility Study II absorbers:

Absorber	Length (cm)	Radius (cm)	Window thickness (µm)	Number needed	FS-II power (kW)	"RevFS-II" power (kW)	
Minicool?	175	30	?	2	≈5.5	≈22	(Not LH2)
SFOFO 1	35	18	360	16	≈0.27	≈2	
SFOFO 2	21	11	220	36	≈0.1	≈0.9]

- power dissipation w/ 4-MW Proton Driver & both μ charges at once -
- First, estimate rate of bulk temperature rise if no flow:

$$c_{p} = 1.1 \times 10^{4} \text{ J/kg} \cdot \text{K}$$

$$\Delta T / \text{s} = \frac{\langle P \rangle}{c_{p} V \rho} = \frac{\langle P \rangle / L}{c_{p} A \rho}$$

$$= \frac{2 \text{ kW} / 0.35 \text{ m}}{1.1 \times 10^{4} \text{ J/kg} \cdot \text{K} \times \pi (0.16 \text{ m})^{2} \times 70.8 \text{ kg/m}^{3}}$$

$$\approx 0.1 \text{ K/s}$$

⇒ 0.1 volume change/s sufficient to keep $\Delta T \leq 0.1$ K ≈ 3 *l*/s for SFOFO 1 (35-cm) absorber

 \rightarrow should be feasible if good transverse mixing, without eddies or dead zones

<u>Ring Cooler</u>

• Ring cooler:

- does 6D cooling via simultaneous transverse cooling and emittance exchange
- e.g. Palmer design:

- Requires muons to traverse each absorber 10–20 times
 → ≈20 kW/absorber power dissipation
- Is this feasible?

Ring Cooler Power Handling

• ΔT per turn at beam center neglecting heat xfer (T. Roberts, IIT):

$$\Delta T \approx \frac{N \frac{dE}{dx}}{\sigma^2 c_p} = \frac{N}{\sigma^2} \frac{4.2 \text{ MeV/g} \cdot \text{cm}^{-2}}{11 \text{ J/g} \cdot \text{K} \times 1.6 \times 10^{13} \text{ MeV/J}}$$

(assuming Gaussian beam centered at origin – maybe poor approx for ring cooler)

• Assume N = 2.8e13 @ 15 Hz (4-MW 24-GeV p beam $\times 0.2 \ \mu/p \times 2 \ \mu$ charges):

- \Rightarrow A single cycle does not boil the hydrogen, BUT
 - can the heat be removed quickly enough? (need low ΔP due to thin windows!)
 - maybe better than this:
 - o in some designs wedge covers only half of beam
 - o 2.8e13 μ /pulse maybe overestimate?
 - o dispersion may lower peak intensity need actual beam distribution from simulation

Absorber Windows

(E. Black, IIT, W. Lau, Oxford, M. Reep, D. Summers, UMiss)

- R&D issue: conventional designs for pressure-vessel windows too thick
 - especially true for ring cooler, which approaches scattering-dominated regime
- → Developing thin, tapered windows, custom-machined (with integral flange) out of a single block of material:

Impact of Safety Requirements (D. Allspach, FNAL)

• Established FNAL liquid-hydrogen rules are explicit:

must prevent oxygen contamination within hydrogen loop, AND
 must exclude ignition sources from vacuum vessel containing absorber

• Since RF cavities considered an ignition source,

 \Rightarrow must have "primary containment" vacuum vessel surrounding absorber vessel

 \rightarrow twice as many windows as in Feasibility Study II simulation!

• Fortunately,

 \Rightarrow total Al thickness per cell comparable to that in FS-II:

 $2 \times 360 \ \mu m$ "SFOFO 1" lattice

 $2 \times 220 \ \mu m$ "SFOFO 2" lattice

Even Thinner Windows?

(D. Summers, UMiss)

• "Aircraft alloys" (containing Li) are stronger & lighter than 6061:

Al alloy name	Composition	Density	Yield strength @300K	Tensile strength @300K	Tensile strength @20K	Rad. Length
	% by weight	(g/cc)	(ksi)	(ksi)	(ksi)	(cm)
6061-T6	1.0Mg 0.6Si 0.3Cu 0.2Cr	2.70	40	45	68	8.86
2090-T81	2.7Cu 2.2Li .12Zr	2.59	74	82	120	9.18

\Rightarrow Windows could be \approx 45% thinner, **if**

 2090-T81 has good machinability and
 such thin windows can be reliably machined
 to be tested soon at U. Miss.
 0.22 mm
 0.36 mm
 (Note latest window shape already 40% thinner than previous iteration)

Summary

- Healthy progress developing LH₂ absorbers with thin windows
- Need to continue iterating towards optimal, self-consistent designs
- Need to document details of absorbers for MuCool, MICE
- Need to pass safety reviews
- Need to think about wedge absorbers and limits to power handling