MICE Physics

On the experimental side, now we must start thinking about the systematic uncertainties and how we determine them

Systematics: assumptions and questions

- > Stated Goal: $\varepsilon^{out}/\varepsilon^{in}$ of $\pm 10^{-3}$
- > Assume there will be a standard (or agreed to) definition of 6-D cooling.
- Assume that the tracker can give us precision particle position and momentum that this won't contribute significantly to the error.
- Assume particle ID < 1% error</p>
- The main sources of systematic errors are in the COOLING CHANNEL and detector solenoids, which will need to be under control to a level such that up to 10 independent sources of systematics will be < 10⁻³
- > Suggested goal to keep each source of error $<3^{*}10^{-4}$ level if at all possible.
- What are the beam diagnostics concerns in a single particle experiment? How is beam diffusion controlled? Backgrounds?

Systematics readout

Areas:

- 1. Beam shape and content
- 2. Trackers and detectors
- 3. Cooling channel

Systematic handles:

- **1**. Using the beam itself: calibration runs
- 2. Experiment staging and component combinatorics
- **3**. Defining tolerances
- 4. Determining controls/monitoring readout onto the event record

Controls:

- 1. Enviromental and backgrounds
- 2. Particle tracking and ID (determining samples and emittances)
- 3. Systematics on the cooling channel

$$\frac{d\varepsilon_N}{ds} = -\frac{1}{\beta^2} \left| \frac{dE_{\mu}}{ds} \right|_{\varepsilon_N} + \frac{\beta_{\perp} (0.014 \,\text{GeV})^2}{2\beta^3 E_{\mu} m_{\mu} X_0}$$

Cooling Channel Count Recap

•	Cooling channel components #			Engineering?	
	Absorber:	temperature	(8-16)*3	yes	
		pressure	2*3	yes	
		He temp	2*3	yes	
		level	8*3	yes	
		length (optical)	4*3	design	
	Magnetic:	power supply	2*3		
		probes	12*2*3		
		temperature	10*3		
	Cryo:	pressure	?		
		He flow	1*3		
		He temperature	2*3		
		Hydride bed	?		
	RF:	power	8	yes	
		phase	8	yes	
		temperature	8	yes	
	Vacuum	O2 monitors	?		
		H2 seal sensor		yes	

Wiring and Connecters for Absorber

