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Introduction: Approaches to Heat Removal

Two approaches under consideration:

➀ External cooling loop (traditional approach).

☞ Bring the LH2 to the coolant (heat removed in an external heat
exchanger).

➁ Combined absorber and heat exchanger.

☞ Bring the coolant, i.e. He, to the LH2 (remove heat directly within
absorber).
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Introduction (cont’d)

Advantages/disadvantages of an external cooling loop:

+ Has been used for several LH2 targets (e.g. SLAC E158).

+ Easy to regulate bulk temperature of LH2.

+ Is likely to work best for small aspect ratio (L/R) absorbers.

− May be difficult to maintain uniform vertical flow through the absorber.

Advantages/disadvantages of a combined absorber/heat exchanger:

+ Takes advantage of natural convection transverse to the beam path.

+ Flow in absorber is self regulating, i.e. larger heat input
⇒ more turbulence⇒ enhanced thermal mixing.

+ Is likely to work best for large aspect ratio (L/R) absorbers.

− More difficult to ensure against boiling at very high Rayleigh numbers.



Heat Exchanger Analysis

Energy balance between LH2 and coolant (He).

✓ Parameters:

Ti = coolant inlet temperature

To = coolant outlet temperature

TLH2 = bulk temperature of LH2

A = surface area of cooling tubes

hLH2 = convective heat transfer coefficient of LH2

hHe = convective heat transfer coefficient of He

∆x = thickness of cooling tube walls

kw = thermal conductivity of cooling tube walls

cp = specific heat capacity of He



Heat Exchanger Analysis (cont’d)

✓ Rate of heat transfer:

q̇ = − A(To − Ti)(
1

hLH2
+ ∆x

kw
+ 1

hHe

)
ln
(

TLH2
−To

TLH2
−Ti

)
✓ Mass flow rate of He:

ṁHe =
q̇

cp (To − Ti)
.

hHe ⇒ from appropriate correlation (flow through a tube).

hLH2 and TLH2 ⇒ from CFD simulations (no
correlations for natural convection with heat generation).



Computational Fluid Dynamics (CFD)

Features of the CFD Simulations:

✓ Provides average convective heat transfer coefficient and average LH2

temperature for heat exchanger analysis.

✓ Track maximum LH2 temperature (cf. boiling point).

✓ Determine details of fluid flow and heat transfer in absorber.

⇒ Better understanding leads to better design!



CFD (cont’d)

Take 1: Results using FLUENT (M. Boghosian):

✓ Simulate one half of symmetric domain.

✓ Steady flow calculations.

✓ Heat generation via steady Gaussian distribution.

✓ Turbulence modeling (RANS) used for RaR ≥ 4× 108.

Take 2: Results using COA code (A. Obabko and E. Almasri):

✓ Simulate full domain.

✓ Unsteady flow calculations.

✓ All scales computed for all Rayleigh numbers.

➥ Investigate startup behavior, e.g. startup overshoot in Tmax.

➥ Investigate possibility of asymmetric flow oscillations.

➥ Investigate influence of beam pulsing.



FLUENT CFD Results

Average Nusselt Number vs. Rayleigh Number:

Nulam = 0.8114Ra 0.1931

Nuturb = 0.3079Ra 0.2184

Nu = 0.5754Ra 0.1979

Nu = 0.6789Ra 0.1859

NuJSME = 0.5042Ra 0.2126
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FLUENT CFD Results (cont’d)

Non-Dimensional Maximum Temperature vs. Rayleigh Number:
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Parameter Map for LH2
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Sample Heat Exchanger Analysis

Absorber parameters (single-flip lattice):

L = 0.3 m, R = 0.2 m, q̇ = 150 W ⇒ RaR = 1.64× 1014

Heat exchanger parameters (LH2 and He at 2 atm):

T ∗
i = 14 K

T ∗
o = 15 K

T ∗
LH2

= 18.5 K (from CFD results)

T ∗
max = 18.9 K (from CFD results)

hHe = 1,580 W/m2K

hLH2 = 210 W/m2K (from CFD results)

Results:

Required heat transfer area: A = 0.20m2

Mass flow rate of He: ṁHe = 0.028 kg/s (3.9 l/s)



Schematic

T ∗
w

θ

r∗

R

q̇′′′(r)

σ∗

g

θ = 0◦

θ = 180◦



COA Formulation

Properties and parameters:

R = radius of absorber

Tw = wall temperature of absorber

q̇′′′(r) = rate of volumetric heat generation (Gaussian distribution)

q̇′ = rate of heat generation per unit length

σ∗ = standard deviation of heat generation Gaussian distribution

ν = kinematic viscosity of LH2

α = thermal diffusivity of LH2

k = thermal conductivity of LH2

β = coefficient of thermal expansion of LH2

g = acceleration due to gravity



Formulation (cont’d)

Non-dimensional variables:

r =
r∗

R
, vr =

v∗r
α/R

, vθ =
v∗θ
α/R

, t =
t∗

R2/α
,

T =
T ∗ − Tw

q̇′/k
, ψ =

ψ∗

α
, ω =

ω∗

α/R2
,

q(r) =
q̇′′′(r)

q̇′/R2
=

1

2πσ2
e−

r2

2σ2 , σ =
σ∗

R
.

Initial and boundary conditions:

T = ω = ψ = vr = vθ = 0 at t = 0,

T = ψ = vr = vθ = 0 at r = 1.



Governing Equations ( T - ω - ψ formulation)

Energy equation:
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Vorticity-transport equation:
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Streamfunction equation:
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Formulation – Non-Dimensional Parameters

Prandtl Number:

Pr =
ν

α

Rayleigh Number:

RaR = GrPr =
gR3βq̇′/k

να

(
=

π

32
RaMB

)
Nusselt number = nondimensional convective heat transfer coefficient,
hLH2 :

NuR =
hLH2R

k

(
=
NuMB

2

)
Nu = Nusselt number averaged over inner surface of cylinder.〈
Nu
〉

= Nusselt number averaged over time interval.



Results – Flow Regimes

The following flow regimes are observed:

☞ Steady, symmetric solutions: RaR ≤ 1× 108

☞ Unsteady, asymmetric solutions: RaR > 1× 108

Steady, symmetric results for RaR = 108, σ = 0.25:

ψ and ω: ψ and T : Nu vs. θ:
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Results: RaR = 108, σ = 0.25

Nu vs. t:
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Code Comparisons – Average Nusselt Number ( Nu)

Uniform heat generation (σ →∞) with Pr = 1:

RaR Mitachi et al. 1 FLUENT2 COA Code

1.57× 106 8.58 7.7 8.23

1.57× 107 14.0 11.9 12.0

1 Mitachi et al. (1986, 1987) - Results shown are from numerical simulations which
compared favorably with experiments.

2 From M. Boghosian’s correlation for Pr = 1.4, i.e. NuMB = 0.7041 ·Ra0.1864
MB .



Code Comparisons – COA vs. FLUENT

Gaussian heat generation: σ = 0.25

steady laminar, steady RANS (turbulent), unsteady N–S

FLUENT1 COA Code

RaR Tavg Tmax Nu 〈Tavg〉 〈Tmax〉
〈
Nu
〉

1× 108 0.0101 0.0169 16.4 0.0100 0.018 15.6

1× 109 0.0067 0.0101 25.1 0.0055 0.0084 23.7

1× 1010 0.0045 0.0060 38.5 0.0038 0.0059 38.4

1 From M. Boghosian’s correlations (TMB = π
4T ):

TavgMB
= 0.3130 · Ra

−0.1771
MB , TmaxMB

= 1.3597 · Ra
−0.2233
MB , NuMB = 0.7041 · Ra

0.1852
MB



Unsteady, Asymmetric Results: RaR = 1010, σ = 0.25
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Unsteady, Asymmetric Results

Asymmetry parameter (normalized kinetic energy per unit mass crossing
vertical symmetry line, i.e.−1 ≤ y ≤ 1):

κ =

(∫ 1

−1
v2

θ dy∫ 1

−1
v2

r dy

)1/2
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Gaseous Absorber Parameters

For dE/dx = 13.81 MeV, 1.5× 1014 muons/s⇒ q̇′ = 332 W/m.

Then at 100 atm and 80 K⇒ RaR = 2.01× 1015 for R = 0.5 m.

Characteristics:

+ No boiling!

− More complex and time-consuming to solve the fluid flow and heat
transfer problem:

☞ RaR is one order of magnitude higher than in the case of liquid
hydrogen absorber.

☞ Compressibility?

? Treatment of actual geometry.

? Effect of ionization and magnetic field on fluid flow and heat transfer
characteristics.



Conclusions

➢ Current COA results compare very well with limited experimental data
and FLUENT results (both laminar and turbulent regimes).

➢ Critical Rayleigh number for unsteady, asymmetric behavior is
RaR > 1× 108.

⇒ Roughly corresponds to laminar to turbulent transition in FLUENT
results.

➢ No start-up overshoot in temperature at high Ra.

⇒ Heater not necessary to improve performance of absorber as
heat exchanger.

➢ CFD results offer guidance for gaseous absorber (additional issues
must be addressed).



Current and Future Efforts

➢ Obtain solutions at higher Rayleigh numbers (target RaR ∼ 1014).

☞ Incorporate grid transformation in COA code.

➢ Compare high-Rayleigh number COA solutions (unsteady) with
FLUENT results (steady RANS).

➢ Evaluate influence of σ, i.e. ratio of beam size to absorber size, on heat
transfer.

➢ Investigate influence of pulsed beam on fluid dynamics and heat
transfer.

☞ Note that at 15 Hz, one pulse corresponds to 2.4× 10−7

non-dimensional time units (cf. ∆t = 10−8).

➢ Comparisons of CFD predictions with flow tests:

☞ J. Norem’s beam tests at Argonne.

☞ MTA test of KEK absorber with temperature probes.



Proposed Flow Test

Wish list:

✓ Near room temperature flow test⇒ minimize cost; maximize possible
sites for test.

✓ Working fluid that is safe and easy to work with.

✓ Allow for flexibility in providing heat source.

✓ Maximize information obtained without need for internal measurements
(may be difficult depending on heat source).

⇒ If such measurements are possible, all the better.

✓ Provide for comparisons of essential data with CFD results.



Proposed Flow Test (cont’d)

In a typical test one would choose the geometry, working fluid and heat
input to give a particular Rayleigh number. Then the temperature (e.g.
maximum temperature) and flow conditions would be measured.

⇒ Choose the Rayleigh number and determine ∆T ∗.

The key insight:

☞ We can measure temperature change by heating from a known wall
temperature to boiling, i.e. ∆T ∗ = T ∗

boil − T ∗
w.

⇒ In the proposed test, the geometry, working fluid and temperature
range are chosen, and the required heat input is determined.

⇒ Choose the ∆T ∗ and determine Rayleigh number.



Proposed Flow Test (cont’d)

Features:

✓ Set up: absorber encased in cooling sheath (similar to actual absorber).

✓ Heat source: electric current in absorber fluid, beam, etc.

✓ Absorber fluid: water is a candidate.

→ Could possibly use additive to increase electrical conductivity and/or
lower boiling point.



Parameter Map for Water
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Proposed Flow Test (cont’d)

Procedure:

➀ Choose ∆T ∗ ⇒ Absorber wall temperature T ∗
w = T ∗

boil −∆T ∗.

➁ Circulate coolant until absorber fluid reaches uniform temperature equal
to T ∗

w.

➂ Turn on heat source and increase in a quasi-steady manner, i.e. slowly,
until incipient boiling occurs.

➃ Record video to note location of incipient boiling and visualize flow using
bubbles.

➄ Determine heat output from absorber by measuring mass flow rate and
inlet/outlet temperatures of coolant.

➅ At conclusion of test, drain fluid from absorber and determine bulk, i.e.
average, temperature, T ∗

avg, of absorber fluid, i.e. drain at constant,
known mass flow rate and measure time series of temperature of
draining fluid.

➆ Run test for a series of ∆T ∗’s.



Proposed Flow Test (cont’d)

Analysis of flow-test results:

➀ Determine actual Rayleigh number of test from magnitude of heat input
necessary to produce boiling, i.e. selected ∆T ∗ = T ∗

boil − T ∗
w.

➁ Determine heat input predicted from CFD to produce temperature rise
corresponding to ∆T ∗.

➂ Compare actual heat input required for boiling with that predicted from
CFD, i.e. compare actual and predicted Rayleigh numbers for given
∆T ∗.

➃ Estimate average Nusselt number using actual heat input, heat transfer
surface area and T ∗

avg − T ∗
w.

➄ Compare estimated Nusselt number from flow test with predicted value
from CFD.



Proposed Flow Test (cont’d)

Features of flow-test:

✓ Choose ∆T ∗ rather than Rayleigh number for each test.

✓ No exotic fluid flow or temperature measurements necessary.

→We measure the maximum temperature visually by heating until
boiling occurs.

⇒ The fluid may be heated in the most practical manner without
regard for its effect on measurement techniques.

✓ The bubbles provide some limited visualization capability.

✓ Measuring maximum temperature is a quantity that is influenced
strongly by both fluid dynamic and heat transfer aspects, i.e. it is a
composite of the entire fluid flow and heat transfer environment.


