**Absorber Simulations Update** 

Kevin W. Cassel and Danny Bockenfeld

Fluid Dynamics Research Center, Mechanical, Materials and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL

> Absorber Review Meeting Fermi National Accelerator Laboratory May 17, 2004



Two approaches under consideration:

- ① External cooling loop (traditional approach).
  - rightarrow Bring the  $LH_2$  to the coolant (heat removed in an external heat exchanger).
- ② Combined absorber and heat exchanger.
  - $\$  Bring the coolant, i.e. He, to the  $LH_2$  (remove heat directly within absorber).





Advantages/disadvantages of an external cooling loop:

- + Has been used for several  $LH_2$  targets (e.g. SLAC E158).
- + Easy to regulate bulk temperature of  $LH_2$ .
- + Is likely to work best for small aspect ratio (L/R) absorbers.
- May be difficult to maintain uniform vertical flow through the absorber.

Advantages/disadvantages of a combined absorber/heat exchanger:

- + Takes advantage of natural convection transverse to the beam path.
- + Flow in absorber is self regulating, *i.e.* larger heat input  $\Rightarrow$  more turbulence  $\Rightarrow$  enhanced thermal mixing.
- + Is likely to work best for large aspect ratio (L/R) absorbers.
- More difficult to ensure against boiling at very high Rayleigh numbers.



Energy balance between  $LH_2$  and coolant (He).

✓ Parameters:

| $T_i$      | = | coolant inlet temperature                      |
|------------|---|------------------------------------------------|
| $T_o$      | = | coolant outlet temperature                     |
| $T_{LH_2}$ | = | bulk temperature of $LH_2$                     |
| A          | = | surface area of cooling tubes                  |
| $h_{LH_2}$ | = | convective heat transfer coefficient of $LH_2$ |
| $h_{He}$   | = | convective heat transfer coefficient of $He$   |
| $\Delta x$ | = | thickness of cooling tube walls                |
| $k_w$      | = | thermal conductivity of cooling tube walls     |
| $c_p$      | = | specific heat capacity of $He$                 |
|            |   |                                                |



✓ Rate of heat transfer:

$$\dot{q} = -\frac{A(T_o - T_i)}{\left(\frac{1}{h_{LH_2}} + \frac{\Delta x}{k_w} + \frac{1}{h_{He}}\right) \ln\left(\frac{T_{LH_2} - T_o}{T_{LH_2} - T_i}\right)}$$

✓ Mass flow rate of He:

$$\dot{m}_{He} = \frac{\dot{q}}{c_p \left(T_o - T_i\right)}.$$

 $h_{He} \Rightarrow$  from appropriate correlation (flow through a tube).  $h_{LH_2}$  and  $T_{LH_2} \Rightarrow$  from CFD simulations (no correlations for natural convection with heat generation).



# **Computational Fluid Dynamics (CFD)**

Features of the CFD Simulations:

- ✓ Provides average convective heat transfer coefficient and average  $LH_2$  temperature for heat exchanger analysis.
- ✓ Track maximum  $LH_2$  temperature (*cf.* boiling point).
- ✓ Determine details of fluid flow and heat transfer in absorber.
  - $\Rightarrow$  Better understanding leads to better design!



# CFD (cont'd)

Take 1: Results using FLUENT (M. Boghosian):

- ✓ Simulate one half of symmetric domain.
- ✓ Steady flow calculations.
- ✓ Heat generation via *steady* Gaussian distribution.
- ✓ Turbulence modeling (RANS) used for  $Ra_R \ge 4 \times 10^8$ .
- Take 2: Results using COA code (A. Obabko and E. Almasri):
- ✓ Simulate full domain.
- ✓ Unsteady flow calculations.
- ✓ All scales computed for all Rayleigh numbers.
  - → Investigate startup behavior, *e.g.* startup overshoot in  $T_{max}$ .
  - ► Investigate possibility of asymmetric flow oscillations.
  - ➡ Investigate influence of beam pulsing.



#### **FLUENT CFD Results**

#### Average Nusselt Number vs. Rayleigh Number:





Non-Dimensional Maximum Temperature vs. Rayleigh Number:







#### Parameter Map for $LH_2$



Note: Properties taken at 18 K, 2 atm.



Absorber parameters (single-flip lattice):

 $L = 0.3 \,\mathrm{m}, \quad R = 0.2 \,\mathrm{m}, \quad \dot{q} = 150 \,\mathrm{W} \quad \Rightarrow \quad Ra_R = 1.64 \times 10^{14}$ 

Heat exchanger parameters ( $LH_2$  and He at 2 atm):

$$T_i^* = 14 \text{ K}$$
  
 $T_o^* = 15 \text{ K}$   
 $T_{LH_2}^* = 18.5 \text{ K} \text{ (from CFD results)}$   
 $T_{max}^* = 18.9 \text{ K} \text{ (from CFD results)}$   
 $h_{He} = 1,580 \text{ W/m}^2 \text{ K}$   
 $h_{LH_2} = 210 \text{ W/m}^2 \text{ K} \text{ (from CFD results)}$ 

Results:

Required heat transfer area:  $A = 0.20 \text{m}^2$ 

Mass flow rate of  $He: \dot{m}_{He} = 0.028$  kg/s (3.9 l/s)



### **Schematic**





Properties and parameters:

| R                                 | = | radius of absorber                                          |
|-----------------------------------|---|-------------------------------------------------------------|
| $T_w$                             | = | wall temperature of absorber                                |
| $\dot{q}^{\prime\prime\prime}(r)$ | = | rate of volumetric heat generation (Gaussian distribution)  |
| $\dot{q}'$                        | = | rate of heat generation per unit length                     |
| $\sigma^*$                        | = | standard deviation of heat generation Gaussian distribution |
| u                                 | = | kinematic viscosity of $LH_2$                               |
| lpha                              | = | thermal diffusivity of $LH_2$                               |
| k                                 | = | thermal conductivity of $LH_2$                              |
| eta                               | = | coefficient of thermal expansion of $LH_2$                  |
| g                                 | = | acceleration due to gravity                                 |



Non-dimensional variables:

$$r = \frac{r^*}{R}, \quad v_r = \frac{v_r^*}{\alpha/R}, \quad v_\theta = \frac{v_\theta^*}{\alpha/R}, \quad t = \frac{t^*}{R^2/\alpha},$$
$$T = \frac{T^* - T_w}{\dot{q}'/k}, \quad \psi = \frac{\psi^*}{\alpha}, \quad \omega = \frac{\omega^*}{\alpha/R^2},$$
$$q(r) = \frac{\dot{q}'''(r)}{\dot{q}'/R^2} = \frac{1}{2\pi\sigma^2}e^{-\frac{r^2}{2\sigma^2}}, \quad \sigma = \frac{\sigma^*}{R}.$$

Initial and boundary conditions:

$$T = \omega = \psi = v_r = v_\theta = 0 \quad \text{at} \quad t = 0,$$
$$T = \psi = v_r = v_\theta = 0 \quad \text{at} \quad r = 1.$$



Energy equation:

$$\frac{\partial T}{\partial t} + v_r \frac{\partial T}{\partial r} + \frac{v_\theta}{r} \frac{\partial T}{\partial \theta} = \frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + q(r)$$

Vorticity-transport equation:

$$\frac{\partial \omega}{\partial t} + v_r \frac{\partial \omega}{\partial r} + \frac{v_\theta}{r} \frac{\partial \omega}{\partial \theta} = Pr \left[ \frac{\partial^2 \omega}{\partial r^2} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \omega}{\partial \theta^2} \right] + Ra_R Pr \left[ \sin \theta \frac{\partial T}{\partial r} + \frac{\cos \theta}{r} \frac{\partial T}{\partial \theta} \right]$$

Streamfunction equation:

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = -\omega$$
$$v_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta}, \quad v_\theta = -\frac{\partial \psi}{\partial r}$$



Prandtl Number:

$$Pr = \frac{\nu}{\alpha}$$

Rayleigh Number:

$$Ra_R = GrPr = \frac{gR^3\beta\dot{q}'/k}{\nu\alpha} \left(=\frac{\pi}{32}Ra_{MB}\right)$$

Nusselt number = nondimensional convective heat transfer coefficient,  $h_{LH_2}$ :

$$Nu_R = \frac{h_{LH_2}R}{k} \left(=\frac{Nu_{MB}}{2}\right)$$

 $\overline{Nu}$  = Nusselt number averaged over inner surface of cylinder.

 $\langle Nu \rangle$  = Nusselt number averaged over time interval.



#### **Results – Flow Regimes**

The following flow regimes are observed:

- ${}$  Steady, symmetric solutions:  $Ra_R \leq 1 \times 10^8$
- rightarrow Unsteady, asymmetric solutions:  $Ra_R > 1 \times 10^8$

Steady, symmetric results for  $Ra_R = 10^8, \sigma = 0.25$ :

```
\psi and \omega: \psi and T:
```





ILLINOIS INSTITUTE V OF TECHNOLOGY

# **Results:** $Ra_R = 10^8, \sigma = 0.25$







Uniform heat generation ( $\sigma \rightarrow \infty$ ) with Pr = 1:

| $Ra_R$             | Mitachi <i>et al.</i> <sup>1</sup> | $FLUENT^2$ | COA Code |  |
|--------------------|------------------------------------|------------|----------|--|
| $1.57 \times 10^6$ | 8.58                               | 7.7        | 8.23     |  |
| $1.57 \times 10^7$ | 14.0                               | 11.9       | 12.0     |  |

 $^{1}$  Mitachi *et al.* (1986, 1987) - Results shown are from numerical simulations which compared favorably with experiments.

 $^2$  From M. Boghosian's correlation for Pr=1.4, *i.e.*  $\overline{Nu}_{MB}=0.7041\cdot Ra_{MB}^{0.1864}$ .



Gaussian heat generation:  $\sigma = 0.25$ 

steady laminar, steady RANS (turbulent), unsteady N-S

|                    | F         | $LUENT^1$ |                 | COA Code                  |                           |                                 |
|--------------------|-----------|-----------|-----------------|---------------------------|---------------------------|---------------------------------|
| $Ra_R$             | $T_{avg}$ | $T_{max}$ | $\overline{Nu}$ | $\langle T_{avg} \rangle$ | $\langle T_{max} \rangle$ | $\langle \overline{Nu} \rangle$ |
| $1 \times 10^8$    | 0.0101    | 0.0169    | 16.4            | 0.0100                    | 0.018                     | 15.6                            |
| $1 \times 10^9$    | 0.0067    | 0.0101    | 25.1            | 0.0055                    | 0.0084                    | 23.7                            |
| $1 \times 10^{10}$ | 0.0045    | 0.0060    | 38.5            | 0.0038                    | 0.0059                    | 38.4                            |

<sup>1</sup> From M. Boghosian's correlations  $(T_{MB} = \frac{\pi}{4}T)$ :

 $T_{avg_{MB}} = 0.3130 \cdot Ra_{MB}^{-0.1771}, \ T_{max_{MB}} = 1.3597 \cdot Ra_{MB}^{-0.2233}, \ \overline{Nu}_{MB} = 0.7041 \cdot Ra_{MB}^{0.1852}$ 





Asymmetry parameter (normalized kinetic energy per unit mass crossing vertical symmetry line, *i.e.*  $-1 \le y \le 1$ ):

$$\kappa = \left(\frac{\int_{-1}^{1} v_{\theta}^{2} \, dy}{\int_{-1}^{1} v_{r}^{2} \, dy}\right)^{1/2}$$





For dE/dx = 13.81 MeV,  $1.5 \times 10^{14}$  muons/s  $\Rightarrow \dot{q}' = 332$  W/m. Then at 100 atm and 80 K  $\Rightarrow Ra_R = 2.01 \times 10^{15}$  for R = 0.5 m.

Characteristics:

- + No boiling!
- More complex and time-consuming to solve the fluid flow and heat transfer problem:
  - $rightarrow Ra_R$  is one order of magnitude higher than in the case of liquid hydrogen absorber.
  - Compressibility?
- ? Treatment of actual geometry.
- ? Effect of ionization and magnetic field on fluid flow and heat transfer characteristics.



# Conclusions

- Current COA results compare very well with limited experimental data and FLUENT results (both laminar and turbulent regimes).
- > Critical Rayleigh number for unsteady, asymmetric behavior is  $Ra_R > 1 \times 10^8$ .

 $\Rightarrow$  Roughly corresponds to laminar to turbulent transition in FLUENT results.

> No start-up overshoot in temperature at high Ra.

 $\Rightarrow$  Heater not necessary to improve performance of absorber as heat exchanger.

CFD results offer guidance for gaseous absorber (additional issues must be addressed).



- Compare high-Rayleigh number COA solutions (unsteady) with FLUENT results (steady RANS).
- > Evaluate influence of  $\sigma$ , *i.e.* ratio of beam size to absorber size, on heat transfer.
- Investigate influence of pulsed beam on fluid dynamics and heat transfer.
  - $<\!\!\!>$  Note that at 15 Hz, one pulse corresponds to  $2.4\times10^{-7}$  non-dimensional time units (*cf.*  $\Delta t=10^{-8}$ ).
- $\succ$  Comparisons of CFD predictions with flow tests:
  - J. Norem's beam tests at Argonne.
  - MTA test of KEK absorber with temperature probes.



Wish list:

- ✓ Near room temperature flow test ⇒ minimize cost; maximize possible sites for test.
- ✓ Working fluid that is safe and easy to work with.
- ✓ Allow for flexibility in providing heat source.
- Maximize information obtained without need for internal measurements (may be difficult depending on heat source).

 $\Rightarrow$  If such measurements are possible, all the better.

✓ Provide for comparisons of essential data with CFD results.



In a typical test one would choose the geometry, working fluid and heat input to give a particular Rayleigh number. Then the temperature (e.g. maximum temperature) and flow conditions would be measured.

 $\Rightarrow$  Choose the Rayleigh number and determine  $\Delta T^{*}.$ 

#### The key insight:

Solution We can *measure* temperature change by heating from a known wall temperature to boiling, i.e.  $\Delta T^* = T^*_{boil} - T^*_w$ .

 $\Rightarrow$  In the proposed test, the geometry, working fluid and temperature range are chosen, and the required heat input is determined.

 $\Rightarrow$  Choose the  $\Delta T^*$  and determine Rayleigh number.



Features:

- ✓ Set up: absorber encased in cooling sheath (similar to actual absorber).
- ✓ Heat source: electric current in absorber fluid, beam, etc.
- ✓ Absorber fluid: water is a candidate.
  - → Could possibly use additive to increase electrical conductivity and/or lower boiling point.



#### **Parameter Map for Water**



Note: Properties taken at 100°C, 1 atm.



Procedure:

- ① Choose  $\Delta T^* \Rightarrow$  Absorber wall temperature  $T^*_w = T^*_{boil} \Delta T^*$ .
- 2 Circulate coolant until absorber fluid reaches uniform temperature equal to  $T^*_w.$
- ③ Turn on heat source and increase in a quasi-steady manner, i.e. slowly, until incipient boiling occurs.
- ④ Record video to note location of incipient boiling and visualize flow using bubbles.
- ⑤ Determine heat output from absorber by measuring mass flow rate and inlet/outlet temperatures of coolant.
- <sup>(6)</sup> At conclusion of test, drain fluid from absorber and determine bulk, i.e. average, temperature,  $T^*_{avg}$ , of absorber fluid, i.e. drain at constant, known mass flow rate and measure time series of temperature of draining fluid.
- $\ensuremath{\textcircled{}}$  Run test for a series of  $\Delta T^*$  's.



Analysis of flow-test results:

- ① Determine actual Rayleigh number of test from magnitude of heat input necessary to produce boiling, i.e. selected  $\Delta T^* = T^*_{boil} T^*_w$ .
- <sup>(2)</sup> Determine heat input predicted from CFD to produce temperature rise corresponding to  $\Delta T^*$ .
- ③ Compare actual heat input required for boiling with that predicted from CFD, i.e. compare actual and predicted Rayleigh numbers for given  $\Delta T^*$ .
- ④ Estimate average Nusselt number using actual heat input, heat transfer surface area and  $T^*_{avg} T^*_w$ .
- ⑤ Compare estimated Nusselt number from flow test with predicted value from CFD.



Features of flow-test:

- ✓ Choose  $\Delta T^*$  rather than Rayleigh number for each test.
- ✓ No exotic fluid flow or temperature measurements necessary.

 $\rightarrow$  We *measure* the maximum temperature visually by heating until boiling occurs.

 $\Rightarrow$  The fluid may be heated in the most practical manner without regard for its effect on measurement techniques.

- ✓ The bubbles provide some limited visualization capability.
- Measuring maximum temperature is a quantity that is influenced strongly by both fluid dynamic and heat transfer aspects, i.e. it is a composite of the entire fluid flow and heat transfer environment.

