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Introduction: Approaches to Heat Removal

Two approaches under consideration:

➀ External cooling loop (traditional approach).

� Bring the LH2 to the coolant (heat removed in an external heat
exchanger).

➁ Combined absorber and heat exchanger.

� Bring the coolant, i.e.He, to the LH2 (remove heat directly within
absorber).
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Introduction (cont’d)

Advantages/disadvantages of an external cooling loop:

+ Has been used for several LH2 targets (e.g. SLAC E158).

+ Easy to regulate bulk temperature of LH2.

+ Is likely to work best for small aspect ratio (L/R) absorbers.

− May be difficult to maintain uniform vertical flow through the absorber.

Advantages/disadvantages of a combined absorber/heat exchanger:

+ Takes advantage of natural convection transverse to the beam path.

+ Flow in absorber is self regulating, i.e. larger heat input
⇒ more turbulence ⇒ enhanced thermal mixing.

+ Is likely to work best for large aspect ratio (L/R) absorbers.

− More difficult to ensure against boiling at very high Rayleigh numbers.



Heat Exchanger Analysis

Energy balance between LH2 and coolant (He).

� Parameters:

Ti = coolant inlet temperature

To = coolant outlet temperature

TLH2 = bulk temperature of LH2

A = surface area of cooling tubes

hLH2 = convective heat transfer coefficient of LH2

hHe = convective heat transfer coefficient ofHe

∆x = thickness of cooling tube walls

kw = thermal conductivity of cooling tube walls

cp = specific heat capacity ofHe



Heat Exchanger Analysis (cont’d)

� Rate of heat transfer:

q̇ = − A(To − Ti)(
1
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)
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TLH2
−Ti
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� Mass flow rate ofHe:

ṁHe =
q̇

cp (To − Ti)
.

hHe ⇒ from appropriate correlation (flow through a tube).

hLH2 and TLH2 ⇒ from CFD simulations (no
correlations for natural convection with heat generation).



Computational Fluid Dynamics (CFD)

Features of the CFD Simulations:

� Provides average convective heat transfer coefficient and average LH2

temperature for heat exchanger analysis.

� Track maximum LH2 temperature (cf. boiling point).

� Determine details of fluid flow and heat transfer in absorber.

⇒ Better understanding leads to better design!



CFD (cont’d)

Take 1: Results using FLUENT (M. Boghosian):

� Simulate one half of symmetric domain.

� Steady flow calculations.

� Heat generation via steady Gaussian distribution.

� Turbulence modeling (RANS) used for Ra ≥ 4 × 109.

Take 2: Results using COA code (A. Obabko and E. Almasri):

� Simulate full domain.

� Unsteady flow calculations.

� All scales computed for all Rayleigh numbers.

➥ Investigate startup behavior, e.g. startup overshoot in Tmax.

➥ Investigate possibility of asymmetric flow oscillations.

➥ Investigate influence of beam pulsing.



Formulation

Properties and parameters:

R = radius of absorber

Tw = wall temperature of absorber

q̇′′′(r) = rate of volumetric heat generation (Gaussian distribution)

q̇′ = rate of heat generation per unit length

ν = kinematic viscosity of LH2

α = thermal diffusivity of LH2

k = thermal conductivity of LH2

β = coefficient of thermal expansion of LH2



Governing Equations (T - ω - ψ formulation)

Energy equation:
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Vorticity-transport equation:
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Streamfunction equation:
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Formulation (cont’d)

Initial and boundary conditions:

T = ω = ψ = vr = vθ = 0 at t = 0,

T = ψ = vr = vθ = 0 at r = 1.

Non-dimensional variables:
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Formulation – Non-Dimensional Parameters

Prandtl Number:

Pr =
ν

α

Rayleigh Number:

RaR = GrPr =
gR3βq̇′/k
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Nusselt number:
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Results – Flow Regimes

Based on preliminary results, the following flow regimes are observed:

� Steady, symmetric solutions: RaR ≤ 1 × 108

� Unsteady, asymmetric solutions: RaR ≥ 1 × 109

Steady, symmetric results forRaR = 1.57× 107 (uniform heat generation):

Streamfunction: Temperature: Vorticity:
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Steady, Symmetric Results (cont’d)

Nusselt number versus θ for RaR = 1.57 × 107 (uniform heat generation):

Nu vs. θ:

0.0 45.0 90.0 135.0 180.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0



Code Comparisons – Average Nusselt Number (N̄u)

Uniform heat generation (σ → ∞) with Pr = 1:

RaR Mitachi et al. 1 FLUENT2 COA Code

1.57 × 106 8.58 7.7 8.2

1.57 × 107 14.0 11.9 12.0

1 Mitachi et al. (1986, 1987) - Results shown are from numerical simulations which
compared favorably with experiments.

2 From M. Boghosian’s correlation for Pr = 1.4, i.e. N̄uMB = 0.7041 · Ra0.1864
MB .



Steady, Symmetric Results: RaR = 1 × 108, σ = 0.25

Streamfunction: Temperature: Vorticity:

X

Y

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X
Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1



Unsteady, Asymmetric Results: RaR = 1 × 109, σ = 0.25

t = 0.2

Streamfunction: Vorticity:
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Movies for streamfunction, temperature and vorticity (0 ≤ t ≤ 0.25).



Unsteady, Asymmetric Results: RaR = 1 × 109, σ = 0.25

Asymmetric oscillation does not significantly influence wall heat transfer
(e.g.Nu for left and right walls superimposed).

t = 2.0:
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Unsteady Results – High-Ra Startup

Movie for RaR = 1 × 1011 (σ = 0.25).

Nu vs. θ:

t = 0.0015
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Current and Future Efforts

Current and future work:

➢ Simulate Argonne test case and compare results.

➢ Determine critical Rayleigh number above which solutions are unsteady
and asymmetric.

➢ Evaluate influence of σ, i.e. ratio of beam size to absorber size, on heat
transfer.

➢ Obtain solutions at higher Rayleigh numbers (target RaR ∼ 1014).

➢ Compare high-Rayleigh number COA solutions (unsteady) with
FLUENT results (steady RANS).

➢ Examine need for heater, e.g. to combat start-up overshoot.

➢ Investigate influence of pulsed beam on fluid dynamics and heat
transfer.

Note that at 15 Hz, one pulse corresponds to 2.4 × 10−7

non-dimensional time units (cf. ∆t = 10−8).


