

First, a little recent history

- * After Snowmass-1996, we had the following plan
 - o A VLHC of 100 TeV (center-of-mass)
 - o Three different magnets 1.8 T, 9.5 T and 12.5 T
 - o Three different rings 650 km, 140 km, 105 km
- * More recently, we devised a new model for the VLHC
 - If we are willing to accept a decades-long program, low-field and high-field approaches are not adversarial - they support each other
 - This was the Main Ring/Tevatron and LEP/LHC approach, and, if the first step is appropriate, and if an upgrade path is possible, it is the best use of resources

The Concept

- * Take advantage of the space and excellent geology near Fermilab
 - o Build a <u>BIG</u> tunnel, the biggest reasonable for the site
 - o Fill it with a cheap collider
 - o Later, upgrade to a higher-energy collider in the same tunnel
 - This spreads the cost, and, if done right, enables exciting energyfrontier physics at each step
 - It allows more time for the development of cost-reducing technologies and ideas
 - A high-energy full-circumference injector into the high-field machine solves some sticky accelerator issues, like field quality at injection
 - A BIG tunnel is reasonable for a synchrotron radiation-dominated collider, and tunneling can be relatively cheap.

The first step

A VLHC Accelerator Study

- o Requested and charged by the Fermilab Director
- o Based on a Staged Scenario of $E_{\rm cm}^{-}>30$ TeV, Lum> 10^{34} first, eventually $E_{\rm cm}>150$ TeV, $L_{\rm peak}>10^{35}$ in the same tunnel
- o The report is due in May, 2001.
- o The Report will include some estimates of the ranges of expected costs of the major cost drivers for Stage 1. But it is not a cost estimate for Stage 1 of a VLHC!
- BNL and LBNL are involved, particularly in accelerator physics, magnets, vacuum systems, feedback
- We hope to have international involvement, probably, at this late date, as reviewers of our work.

The VLHC Study

Leader Peter Limon

Deputy Bill Foster

o Accelerator Physics

o Magnets & Cryogenics

o Accelerator Systems

Injectors

Conventional Construction Peter Garbincius

o Editors

Mike Syphers & Steve Peggs (BNL)

Jim Strait & Steve Gourlay (LBNL)

Bill Foster & Alan Jackson (LBNL)

Phil Martin

Ernie Malamud & Peter Limon

- Plus, a cast of thousands!
- * First drafts of chapters with many "place holders" were due on February 14. Many of them were actually submitted on time! Most of them were way too detailed and long!
- Now we have to settle some AP and technical issues and agree on descriptions of each collider.

Some Details

- * There are many possibilities for staging
- ❖ Favored at Fermilab now is an ~240 km tunnel
 - o This seems possible in the Fermilab area
- * Fill it with superferric magnets, ~2 T, yielding a 35 TeV 40 TeV (cm) collider (we believe this is least costly, but that remains to be shown one of the goals of the Study)
- Later, 10 T magnets results in E ~ 175 TeV (cm). It could go higher, but synchrotron radiation or IP radiation and power may limit the energy
 - o By the way, a 240 km tunnel will easily support a 300 GeV (cm), 10^{34} e⁺e⁻ collider, or a top factory, with an affordable power cost

Some advantages of this scheme

- Each step yields new and interesting physics
- Each step is a minimum cost step, even though the total cost to get to E>100 TeV may not be minimized by this scheme
- There are many accelerator physics advantages
 - o A superferric magnet permits injection from Tevatron
 - o Injection at high energy eliminates magnetization and stability issues in the high-energy collider
 - o Single turn injection is simple and fast, maximizing integrated luminosity
 - o The initial technology is straightforward, minimizing necessary R&D
 - Time is made available for the R&D necessary to solve problems and reduce cost of high-energy phase
- The plan is flexible in particle type (pp or e⁺e⁻), final energy, and experiments

Some disadvantages of this scheme

- It takes longer to get to the highest energy maybe
- It may cost more (though not necessarily) to get to the highest energy
 - o For example, one could get to an intermediate energy, say 100 TeV, by skipping 2 T magnets and using 5 T for the first step. This might be quicker and cheaper the Study might illuminate this issue
- There are some accelerator physics disadvantages
 - The balance between total synchrotron radiation power and emittance damping may not be optimal
 - The initial low-energy design has to correctly predict many details of the final high-energy design
 - The beam injected into the high-field collider can cause damage to the machine
- The plan starts with a very big tunnel, which may have some political difficulties

Primary Parameters for a Staged VLHC

From the Director's charge Stage 1 Stage 2

Minimum E_{cm} [TeV] 30 150

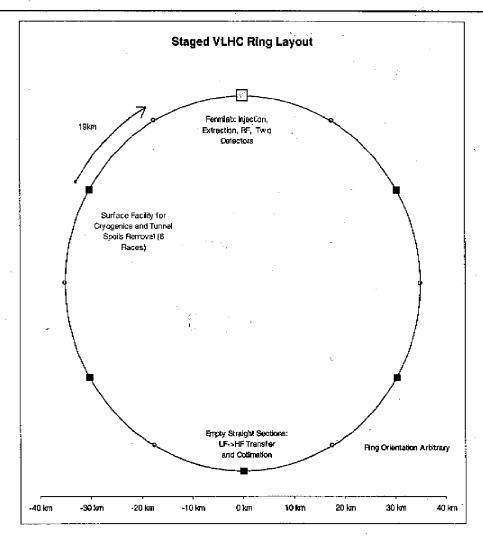
Peak Luminosity [cm $^{-2}$ s $^{-1}$] 10^{34} 2×10^{34}

Located at Fermilab, Injection from the Tevatron

Additional Parameters

Average R_{arc} [km] 35.0000 35.0000

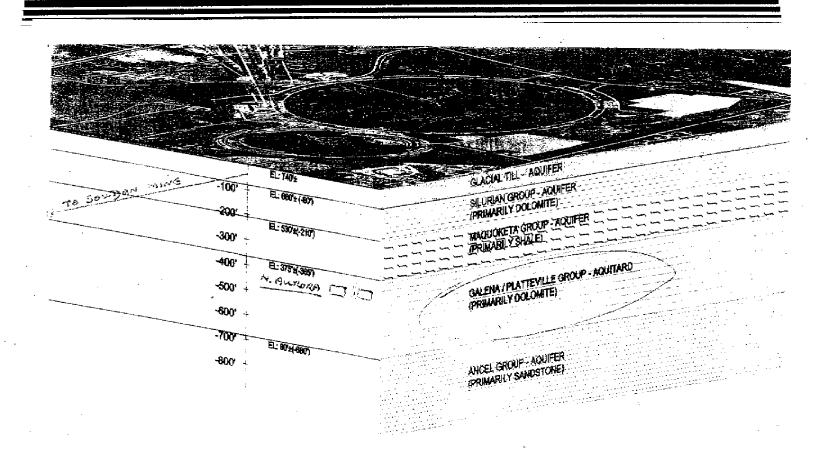
Construction period 10 years


Maximum annual obligations \$1 Billion

Parameters for a Staged VLHC

	<u>Phase 1</u>	<u>Phase 2</u>	
E _{cm} [TeV]	40	175	
Peak Luminosity [cm ⁻² s ⁻¹]	1034	2×10 ³⁴	
Circ _{total} [km]	2	233	
B _{dipole} [T]	v., 1.9	9.4	
Arc packing factor	~95.0%	~83.0%	
Average R _{arc} [km]	34	34.961	
Half-cell length [m]	13!	135.486	
Number of half cells	1	1720	
Number of dipoles	3440	9728	
Length of dipoles [m]	65	16	
Bunch spacing [ns]	, 18	3.8	

Very Large Hadron Collider



VLHC Study

MINOS

Geologic Setting

DOE NoMI Review May 18-20, 1999 WBS 1.2 Page 3

"This simple, well understood, bedrock geology is outstanding for tunneling." SSC Site Evaluation Summary - SSC Site Task Force, DOE/ER-0392, November 1988.

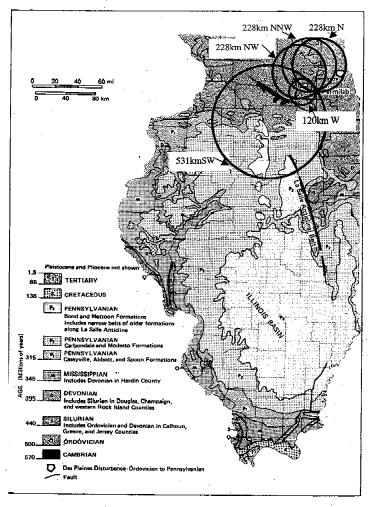
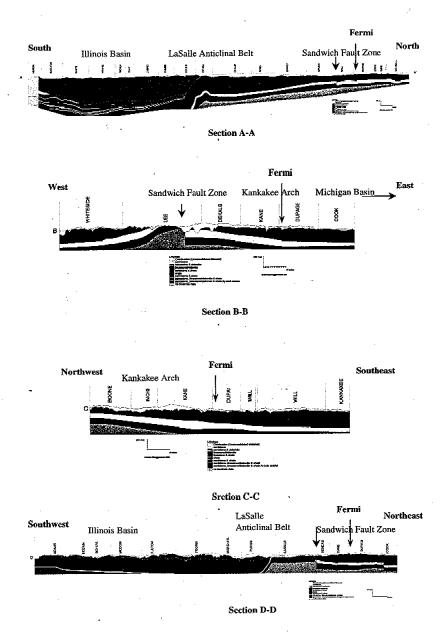


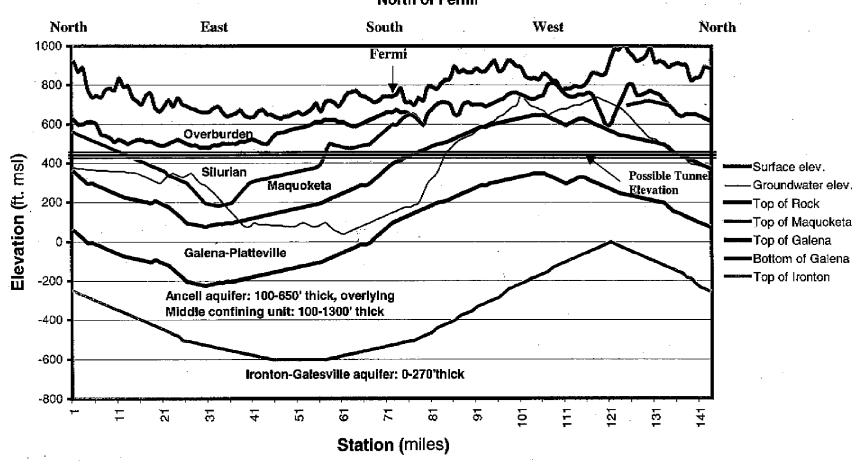
Figure 13: Possible VLHC Alignments

Peter J. Conroy

Page 22

10/20/2000




Figure 4: Geologic Sections, Illinois State Geological Survey

Peter J. Conroy Page 13 10/20/2000

Peter J. Conroy

Figure 15: Generalized Geologic Section - Lampshade
228 km Ring
North of Fermi

10/20/2000

Page 24

· · · · · · · · · · · · · · · · · · ·		
Beta* at interaction point	0.30	m
Total cross section at E _{cm}	1.3×10^{-25}	cm²
Distance from IP to first magnet	21	m
Interactions/crossing	26	
Injection energy from Tevatron	900	GeV
Fill time from Tevatron	60	mins
Acceleration time	1000	S
Fraction of buckets filled with beam	90	percent
Normalized emittance (rms)	$1.5\pi \times 10^{-6}$	m.
Particles/bunch	2.5×10^{10}	
Beam current	1.9×10^{-1}	Α
Minimum tunnel diameter	3.6	m
RF frequency	477.938	MHz

Stage 1 VLHC Parameters

RF Voltage

Bunch length at injection (rms)

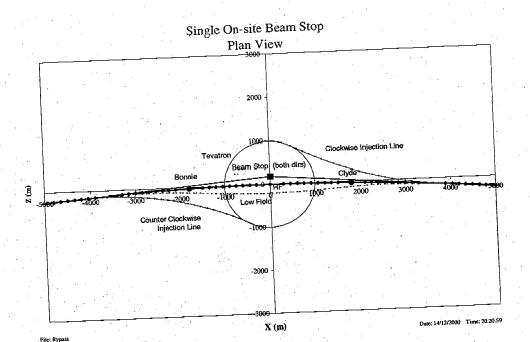
Bunch length at collision (rms)

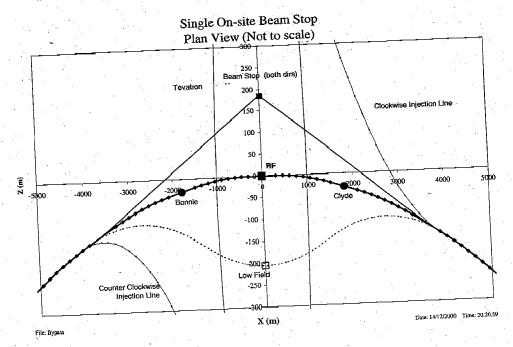
5.5

2.7

10

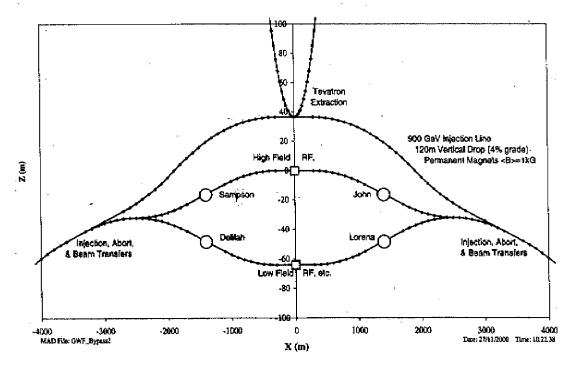
MV

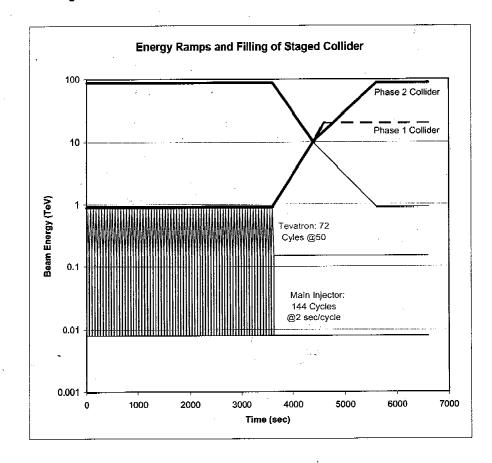

cm


cm

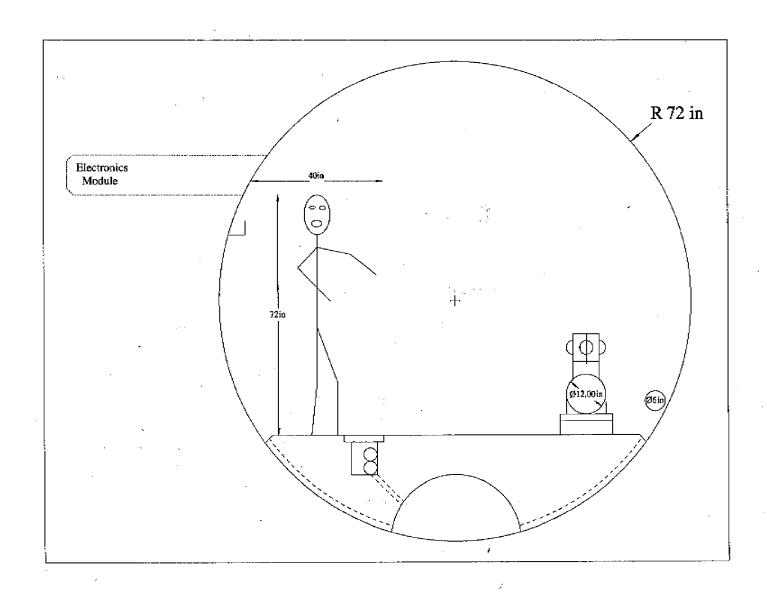
Stage 2 VLHC parameters

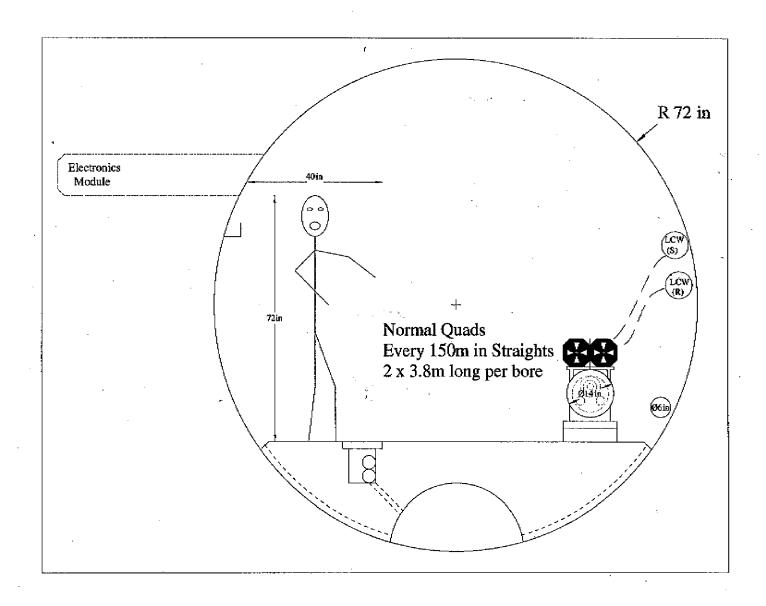
Beta* at interaction point	0.50	m
Total cross section at E _{cm}	1.5×10^{-25}	cm ²
Distance from IP to first magnet	30	m
Interactions/crossing	60	
Power from beam-beam inelastic collisions	40	kW :
Injection energy from Stage 1	10	TeV
Fill time from Tevatron	30	S
Acceleration time	2000	S
Fraction of buckets filled with beam	90	percent
Normalized emittance (rms)**	$0.08 \ \pi \times 10^{-6}$	m
Particles/bunch (at peak luminosity)	5×10^9	
Beam current (at peak luminosity)	3.9 X 10 ⁻²	A
SynchRad power/meter/beam	3.5	W/m
Total synch. radiation power (2 beams)	1.3	MW
Magnet length	16	m
Magnets per half-cell	7	

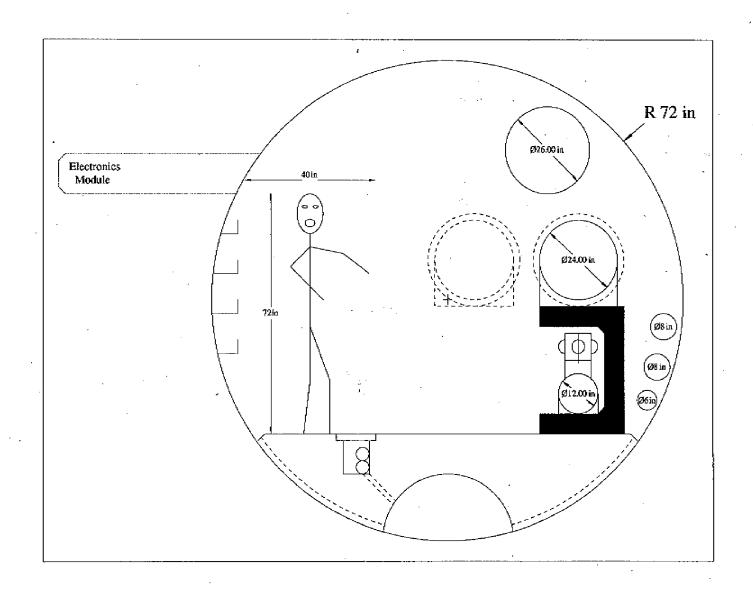




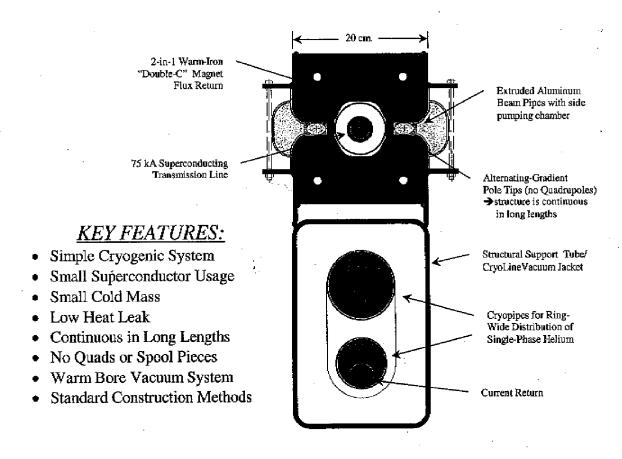
How Two Colliders Coexist in One Tunnel





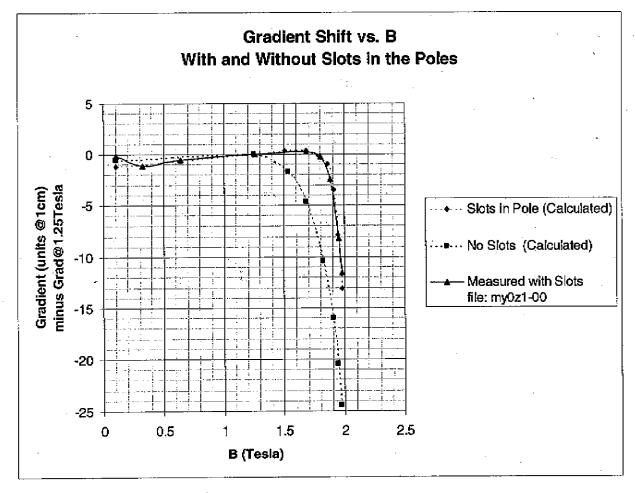

Staged VLHC Parameter List - **DRAFT** Version 0.4 2/23/01

+6+8Z99718:

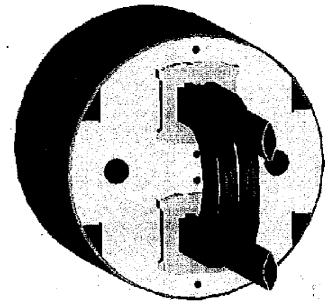


: :::, : 1

Transmission Line Magnet



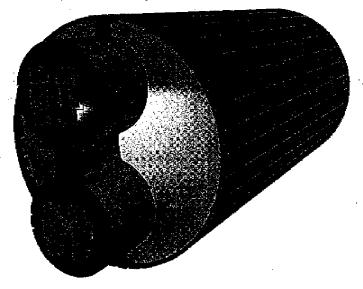
Aspen


Effect of Slots in Pole on Gradient Shift in Transmission Line Magnet

React & Wind Common Coil Dipoles

-Field: Bmax=11 T @ 4.3 K

-Current: 15.3 kA


-Design: two-layer block type

two-bore common coil

-Hybrid: NbSn - NbTi

-Horizontal bore gap: 30 mm

-Coil cross-section per bore 11.2+15.6 cm²

-Field: Bmax=10.5 T @ 4.3 K

-Current: 23.8 kA

-Design: one-layer shifted blocks

two-bore common coil

-Cable: 21 mm width (60 0.7 mm strands)

-Horizontal bore gap: 40 (50) mm

-Coil cross-section per bore 26.7 cm²

January 8, 2001

VLHC@Fermilab Aspen

23

Present status (1)

We are making progress. Some findings:

- o 10³⁵ luminosity at 175 TeV (initial chosen parameters for the highenergy ring) seems very problematical - IR power > 200 kW/IR Refrig power for the liner > 100 MW (@plug) for 100 K liner Luminosity lifetime (2 IRs) < 4 hours
- We reduced the luminosity goal to 2x10³⁴
- o Surprisingly, the vacuum was not a problem for the high-energy ring, even at a luminosity of 10^{35} .

* We have a lot of text, too much, in fact.

- o There is a LF engineering team in place. They are working away.
- We have chosen a company to do underground design and cost estimate for three orientations of the tunnel.
- o We have decided how to present the cost estimate a range of costs for the major cost drivers and a prescription to extrapolate to the total cost.

Present status (2)

There are still many issues:

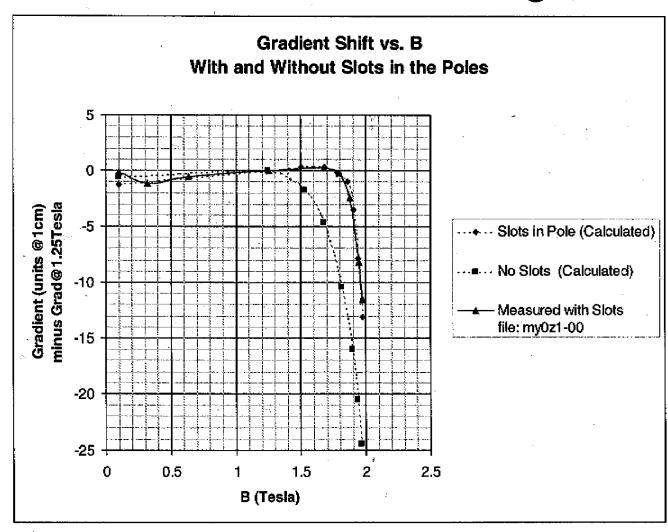
- o The first issue is to agree on all the parameters of both rings.
- o Those parameters have to be communicated, and <u>all</u> the text and cost estimates have to work be based on those parameters.
- o The text has to be cut down to a reasonable amount. We are aiming at a total of about 200 pages. We have made page guidance for each section.
- o We hope that longer and more detailed papers will be put into sufficiently polished form that they can be indexed and referenced.
- o We are starting the cost estimating exercise.

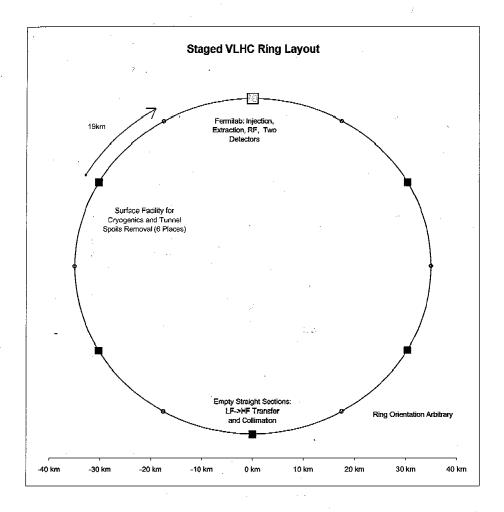
There are many technical issues to settle:

- We do not yet have all of the parameters we need for the low-energy ring, such as a complete fabrication and installation model, alignment requirements, engineering models of installation, repair, and so forth.
- o We need to have a finished lattice of the HF ring, including the IRs. This model has to be feasible.

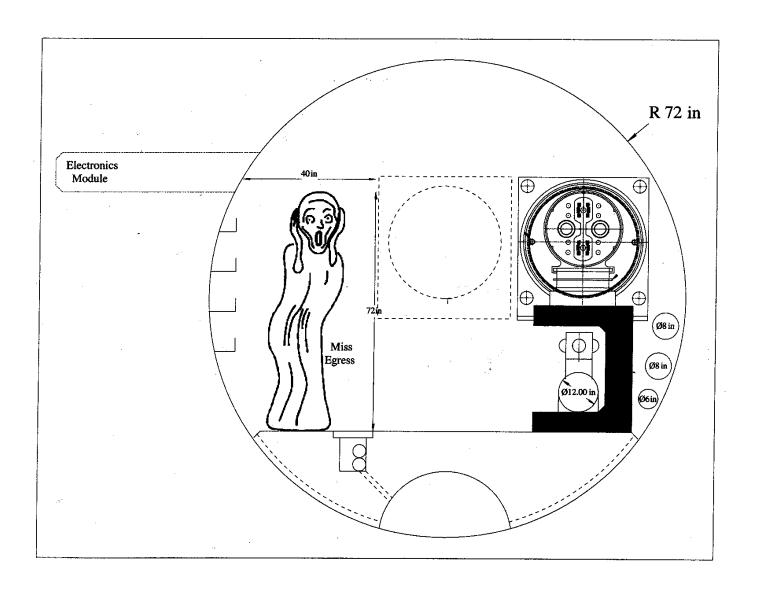
Snowmass 2001

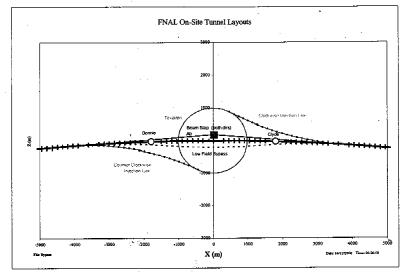
* VLHC goals and questions for Snowmass 2001


- Our goal will be to fill in, expand and broaden the VLHC Study
 - What other possibilities are there? ete-, smaller tunnels...
 - Are there other staging possibilities?
 - What are the limits to energy and luminosity?
 - What is the R&D program?
 - Can we sensibly distribute the R&D work among the various participants?
 - When (and how!) along the R&D path can we make decisions and establish new directions?
 - What resources and how much time is needed to accomplish the R&D?


VLHC WEB Pages

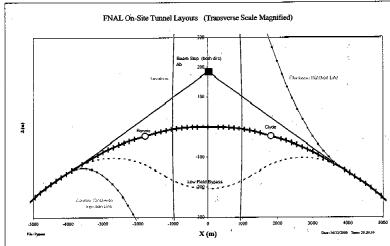
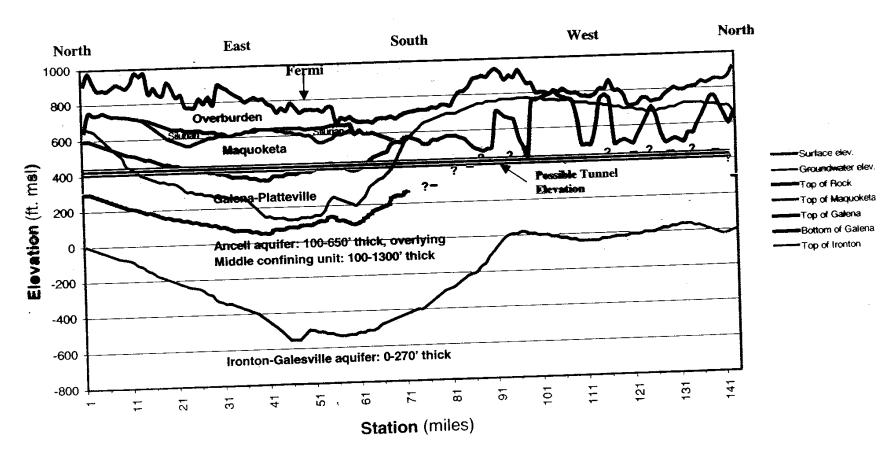
- References and web pages
 - o Proceedings of the workshops: http://vlhc.org
 - o Compilation of papers (Snowmass 96, Gilman Panel, Annual Report etc.) http://www-ap.fnal.gov/VLHC

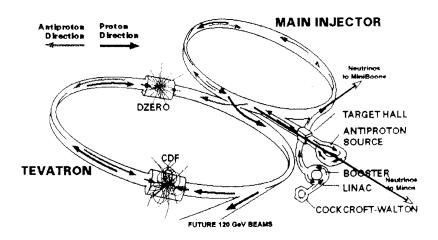

Effect of Slots in Pole on Gradient Shift in Transmission Line Magnet

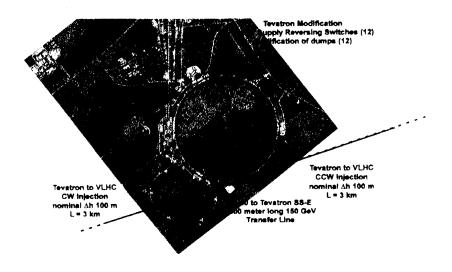

Staged VLHC Parameter List - **DRAFT** Version 0.4 2/23/01

2

Staged VLHC Parameter List - **DRAFT** Version 0.4 2/23/01

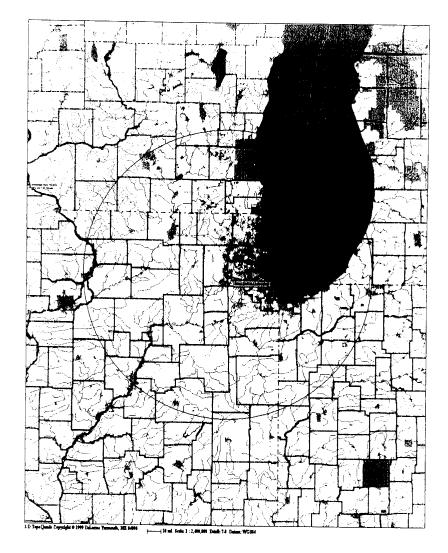
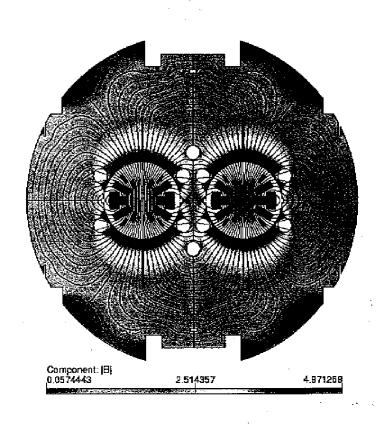



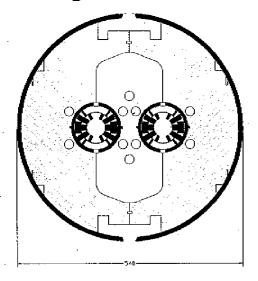

Figure 16: Generalized Geologic Section


228 km Ring

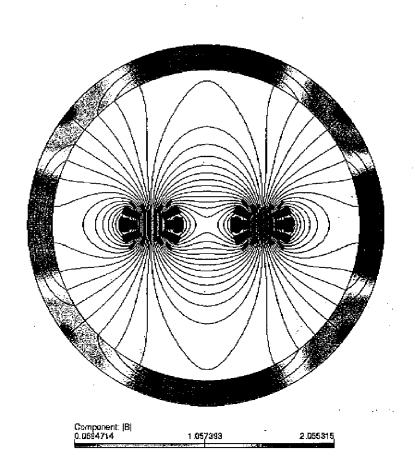
NW of Fermi

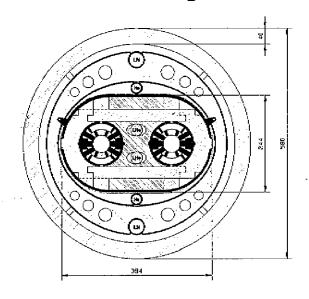
Low field proton colliders


Figure 1: VLHC Maximum Study Region

Double-Bore Cold-Yoke Design


- ❖- bore diameter 43.5 mm (same coil block)
- ❖- bore separation 180 mm
- ❖- 3 piece cold yoke with vertical gap


- ♦- 10, mm thick 55 skin
- correction holes, gap along flux lines

Double-Bore Warm-Yoke Design

- ♦- bore diameter 43.5 mm
- ❖- bore separation 180 mm
- ❖- cold mass size 385 mm
- *- yoke OD 580 mm = cryostat OD
- ❖- yoke thickness 40 mm

What are the Limits?

- The highest energy is limited by various factors:
 - o Stability issues related to ring size, impedence, ground motion, etc.
 - o Magnetic field might be a limit for small rings
 - o Stored beam energy is a safety problem
- The first limit is probably synchrotron radiation (or perhaps multiple interactions per beam crossing)
 - o SynchRad puts power into the beam tube that must be removed
 - o At high enough x-ray energy, it scatters directly into the magnet
 - o It creates vacuum problems
- Synchrotron radiation also has good features
 - o It damps the beam emittance, creating smaller spots, requiring fewer particles for a given luminosity